These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 125407)

  • 81. The effect of ouabain on the guinea pig ileum longitudinal smooth muscle: 1. ATPase activities in a sarcolemma-enriched fraction prepared with the aid of divalent cation depletion of the intact muscle.
    James MR; Roufogalis BD
    Can J Physiol Pharmacol; 1977 Oct; 55(5):1190-6. PubMed ID: 144550
    [TBL] [Abstract][Full Text] [Related]  

  • 82. A possible molecular mechanism of the action of digitalis: ouabain action on calcium binding to sites associated with a purified sodium-potassium-activated adenosine triphosphatase from kidney.
    Gervais A; Lane LK; Anner BM; Lindenmayer GE; Schwartz A
    Circ Res; 1977 Jan; 40(1):8-14. PubMed ID: 137087
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Depressed function of a ouabain-sensitive sodium-potassium pump in blood vessels from renal hypertensive dogs.
    Overbeck HW; Pamnani MB; Akera T; Brody TM; Haddy FJ
    Circ Res; 1976 Jun; 38(6 Suppl 2):48-52. PubMed ID: 131655
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Direct evidence of sodium release in the course Na+, K+ -dependent ATPase reaction.
    Lev AA; Risareva LN
    Biochem Biophys Res Commun; 1970 Feb; 38(3):465-9. PubMed ID: 4246834
    [No Abstract]   [Full Text] [Related]  

  • 85. Na-K-Cl cotransport in chloride-transporting epithelia.
    Epstein FH; Silva P
    Ann N Y Acad Sci; 1985; 456():187-97. PubMed ID: 2418726
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Na-K pump and Na-K-ATPase: disparity of their temperature sensitivity.
    Willis JS; Ellory JC; Becker JH
    Am J Physiol; 1978 Nov; 235(5):C159-67. PubMed ID: 215034
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Reconstitution of active transport by kidney and brain (Na+ + K+)-ATPase.
    Goldin SM; Sweadner KJ
    Ann N Y Acad Sci; 1975 Dec; 264():387-97. PubMed ID: 130820
    [No Abstract]   [Full Text] [Related]  

  • 88. Na+-stimulated ATPase activities in basolateral plasma membranes from guinea-pig small intestinal epithelial cells.
    Del Castillo JR; Robinson JW
    Biochim Biophys Acta; 1985 Jan; 812(2):413-22. PubMed ID: 2981548
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Na+ and K+ transport at basolateral membranes of epithelial cells. II. K+ efflux and stoichiometry of the Na,K-ATPase.
    Cox TC; Helman SI
    J Gen Physiol; 1986 Mar; 87(3):485-502. PubMed ID: 2420920
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Effect of ouabain on Na,K-ATPase and electrolyte transport in the dog ileum in vivo.
    Read NW; Krejs GJ; Jones VE; Fordtran JS
    Gut; 1979 May; 20(5):356-65. PubMed ID: 223948
    [TBL] [Abstract][Full Text] [Related]  

  • 91. [Glycoside effect on membrane ATPase of the myocardium in chronic potassium deficiency--measurements of (Na + +K + )-ATPase in the guinea pig ventricle].
    Bolte HD; Lüderitz B; Erdmann E
    Verh Dtsch Ges Inn Med; 1971; 77():991-4. PubMed ID: 4265182
    [No Abstract]   [Full Text] [Related]  

  • 92. Calculation of the membrane potential in smooth muscle cells of the guinea-pig's taenia coli by the Goldman equation.
    Casteels R
    J Physiol; 1969 Nov; 205(1):193-208. PubMed ID: 5354999
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Use of low temperature and high K+ incubation media for in vitro tissue preparation for X-ray microanalysis.
    Hongpaisan J; Roomans GM
    Histochem Cell Biol; 1997 Aug; 108(2):167-78. PubMed ID: 9272436
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Retaining ionic concentrations during in vitro storage of tissue for microanalytical studies.
    Hongpaisan J; Roomans GM
    J Microsc; 1999 Mar; 193(Pt 3):257-67. PubMed ID: 10199004
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Effect of cooling on the intracellular concentrations of Na+, K+ and Cl- in cultured human endothelial cells.
    Larsen T; Solberg S; Johansen R; Jørgensen L
    Scand J Clin Lab Invest; 1988 Oct; 48(6):565-71. PubMed ID: 3217759
    [TBL] [Abstract][Full Text] [Related]  

  • 96. The movement of solutes across the epithelium of the ducts and cisterns in the mammary gland of the ewe.
    Mackenzie DD; Lascelles AK
    Aust J Biol Sci; 1965 Oct; 18(5):1035-44. PubMed ID: 5890591
    [No Abstract]   [Full Text] [Related]  

  • 97. Mammary gland membrane transport systems.
    Shennan DB
    J Mammary Gland Biol Neoplasia; 1998 Jul; 3(3):247-58. PubMed ID: 10819512
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Sodium and potassium distribution in the lactating mouse mammary gland in vivo.
    Berga SE; Neville MC
    J Physiol; 1985 Apr; 361():219-30. PubMed ID: 3989727
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Mouse mammary epithelial cells on floating collagen gels: transepithelial ion transport and effects of prolactin.
    Bisbee CA; Machen TE; Bern HA
    Proc Natl Acad Sci U S A; 1979 Jan; 76(1):536-40. PubMed ID: 284373
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Na-KATPase activity and intracellular ion concentrations in the lactating guinea pig mammary gland. Studies on Na-K activated adenosine triphosphatase, XXXVI.
    Vreeswijk JH; de Pont JJ; Bonting SL
    Pflugers Arch; 1975; 356(4):347-57. PubMed ID: 125407
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.