BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

492 related articles for article (PubMed ID: 12541283)

  • 1. Automated flow cytometry for acquisition of time-dependent population data.
    Abu-Absi NR; Zamamiri A; Kacmar J; Balogh SJ; Srienc F
    Cytometry A; 2003 Feb; 51(2):87-96. PubMed ID: 12541283
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-cell variability in growing Saccharomyces cerevisiae cell populations measured with automated flow cytometry.
    Kacmar J; Zamamiri A; Carlson R; Abu-Absi NR; Srienc F
    J Biotechnol; 2004 Apr; 109(3):239-54. PubMed ID: 15066762
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plug flow cytometry: An automated coupling device for rapid sequential flow cytometric sample analysis.
    Edwards BS; Kuckuck F; Sklar LA
    Cytometry; 1999 Oct; 37(2):156-9. PubMed ID: 10486528
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integration of a barcode reader with a commercial flow cytometer.
    Robinson JP; Maguire D; King G; Kelley S; Durack G
    Cytometry; 1992; 13(2):193-7. PubMed ID: 1547668
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Destabilized green fluorescent protein for monitoring dynamic changes in yeast gene expression with flow cytometry.
    Mateus C; Avery SV
    Yeast; 2000 Oct; 16(14):1313-23. PubMed ID: 11015728
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A flow injection flow cytometry system for on-line monitoring of bioreactors.
    Zhao R; Natarajan A; Srienc F
    Biotechnol Bioeng; 1999 Mar; 62(5):609-17. PubMed ID: 10099570
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bromodeoxyuridine labeling and flow cytometric identification of replicating Saccharomyces cerevisiae cells: lengths of cell cycle phases and population variability at specific cell cycle positions.
    Dien BS; Srienc F
    Biotechnol Prog; 1991; 7(4):291-8. PubMed ID: 1367343
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamics of single cell property distributions in Chinese hamster ovary cell cultures monitored and controlled with automated flow cytometry.
    Kacmar J; Srienc F
    J Biotechnol; 2005 Dec; 120(4):410-20. PubMed ID: 16144728
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flow cytometry and cell cycle kinetics in continuous and fed-batch fermentations of budding yeast.
    Alberghina L; Ranzi BM; Porro D; Martegani E
    Biotechnol Prog; 1991; 7(4):299-304. PubMed ID: 1367344
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of a neural net computer system for analysis of flow cytometric data of phytoplankton populations.
    Frankel DS; Olson RJ; Frankel SL; Chisholm SW
    Cytometry; 1989 Sep; 10(5):540-50. PubMed ID: 2776570
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mammalian cell culture scale-up and fed-batch control using automated flow cytometry.
    Sitton G; Srienc F
    J Biotechnol; 2008 Jun; 135(2):174-80. PubMed ID: 18490070
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physiological significance of the cytometric distribution of fluorescent yeasts after viability staining.
    Bouchez JC; Cornu M; Danzart M; Leveau JY; Duchiron F; Bouix M
    Biotechnol Bioeng; 2004 Jun; 86(5):520-30. PubMed ID: 15129435
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamics of protein distributions in cell populations.
    Brenner N; Farkash K; Braun E
    Phys Biol; 2006 Sep; 3(3):172-82. PubMed ID: 17021381
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and first results of CytoBuoy: a wireless flow cytometer for in situ analysis of marine and fresh waters.
    Dubelaar GB; Gerritzen PL; Beeker AE; Jonker RR; Tangen K
    Cytometry; 1999 Dec; 37(4):247-54. PubMed ID: 10547609
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation of highly pure and viable primordial germ cells from rainbow trout by GFP-dependent flow cytometry.
    Kobayashi T; Yoshizaki G; Takeuchi Y; Takeuchi T
    Mol Reprod Dev; 2004 Jan; 67(1):91-100. PubMed ID: 14648879
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tracking of individual cell cohorts in asynchronous Saccharomyces cerevisiae populations.
    Porro D; Srienc F
    Biotechnol Prog; 1995; 11(3):342-7. PubMed ID: 7619403
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new tool for routine testing of cellular protein expression: integration of cell staining and analysis of protein expression on a microfluidic chip-based system.
    Buhlmann C; Preckel T; Chan S; Luedke G; Valer M
    J Biomol Tech; 2003 Jun; 14(2):119-27. PubMed ID: 14676310
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Real-time on-line flow cytometry for bioprocess monitoring.
    Broger T; Odermatt RP; Huber P; Sonnleitner B
    J Biotechnol; 2011 Jul; 154(4):240-7. PubMed ID: 21609740
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An innovation in flow cytometry data collection and analysis producing a correlated multiple sample analysis in a single file.
    Robinson JP; Durack G; Kelley S
    Cytometry; 1991; 12(1):82-90. PubMed ID: 1999125
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Staining and quantification of poly-3-hydroxybutyrate in Saccharomyces cerevisiae and Cupriavidus necator cell populations using automated flow cytometry.
    Kacmar J; Carlson R; Balogh SJ; Srienc F
    Cytometry A; 2006 Jan; 69(1):27-35. PubMed ID: 16342115
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.