These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 12541730)

  • 21. Comparative study of solvation parameter models accounting the effects of mobile phase composition in reversed-phase liquid chromatography.
    Torres-Lapasió JR; Ruiz-Angel MJ; García-Alvarez-Coque MC
    J Chromatogr A; 2007 Sep; 1166(1-2):85-96. PubMed ID: 17720177
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Extension of the linear solvent strength retention model including a parameter that describes the elution strength changes in liquid chromatography.
    Baeza-Baeza JJ; García-Alvarez-Coque MC
    J Chromatogr A; 2020 Mar; 1615():460757. PubMed ID: 31831147
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modelling retention in liquid chromatography as a function of solvent composition and pH of the mobile phase.
    Bergés R; Sanz-Nebot V; Barbosa J
    J Chromatogr A; 2000 Feb; 869(1-2):27-39. PubMed ID: 10720222
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Simultaneous enhancement of separation selectivity and solvent strength in reversed-phase liquid chromatography using micelles in hydro-organic solvents.
    Khaledi MG; Strasters JK; Rodgers AH; Breyer ED
    Anal Chem; 1990 Jan; 62(2):130-6. PubMed ID: 2310010
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Instrument parameters controlling retention precision in gradient elution reversed-phase liquid.
    Beyaza A; Fana W; Carr PW; Schellinger AP
    J Chromatogr A; 2014 Dec; 1371():90-105. PubMed ID: 25459648
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Controlling solvent strength and selectivity in micellar liquid chromatography: role of organic modifiers and micelles.
    Kord AS; Khaledi MG
    Anal Chem; 1992 Sep; 64(17):1894-900. PubMed ID: 1416041
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Elucidation of retention behaviors in reversed-phase liquid chromatography as a function of mobile phase composition.
    Tsui HW; Kuo CH; Huang YC
    J Chromatogr A; 2019 Jun; 1595():127-135. PubMed ID: 30837162
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Prediction of the retention in reversed-phase liquid chromatography using solute-mobile phase-stationary phase polarity parameters.
    Torres-Lapasió JR; García-Alvarez-Coque MC; Rosés M; Bosch E
    J Chromatogr A; 2002 Apr; 955(1):19-34. PubMed ID: 12061561
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Retention models and interaction mechanisms of acetone and other carbonyl-containing molecules with amylose tris[(S)-α-methylbenzylcarbamate] sorbent.
    Tsui HW; Hwang MY; Ling L; Franses EI; Wang NH
    J Chromatogr A; 2013 Mar; 1279():36-48. PubMed ID: 23374367
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Surface-mediated retention effects of subtilisin site-specific variants in cation-exchange chromatography.
    Chicz RM; Regnier FE
    J Chromatogr; 1988 Jun; 443():193-203. PubMed ID: 3049647
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Accurate determination of log k'w in reversed-phase liquid chromatography. Implications for quantitative structure-retention relationships.
    Hsieh MM; Dorsey JG
    J Chromatogr; 1993 Feb; 631(1-2):63-78. PubMed ID: 8450023
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Selectivity of organic solvents in micellar liquid chromatography of amino acids and peptides.
    Kord AS; Khaledi MG
    J Chromatogr; 1993 Feb; 631(1-2):125-32. PubMed ID: 8450009
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of solvent strength and temperature on retention for a polar-endcapped, octadecylsiloxane-bonded silica stationary phase with methanol-water mobile phases.
    Kiridena W; Poole CF; Koziol WW
    J Chromatogr A; 2004 Dec; 1060(1-2):177-85. PubMed ID: 15628160
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of the organic modifier concentration on the retention in reversed-phase liquid chromatography II. Tests using various simplified models.
    Nikitas P; Pappa-Louisi A; Agrafiotou P
    J Chromatogr A; 2002 Feb; 946(1-2):33-45. PubMed ID: 11873980
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterisation of stationary phases in subcritical fluid chromatography with the solvation parameter model. III. Polar stationary phases.
    West C; Lesellier E
    J Chromatogr A; 2006 Mar; 1110(1-2):200-13. PubMed ID: 16487536
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Prediction of retention in reversed-phase liquid chromatography by means of the polarity parameter model.
    Lázaro E; Izquierdo P; Ràfols C; Rosés M; Bosch E
    J Chromatogr A; 2009 Jul; 1216(27):5214-27. PubMed ID: 19493533
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Retention mechanisms in micellar liquid chromatography.
    Ruiz-Angel MJ; Carda-Broch S; Torres-Lapasió JR; García-Alvarez-Coque MC
    J Chromatogr A; 2009 Mar; 1216(10):1798-814. PubMed ID: 18838142
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of large volume injection of hydrophobic solvents on the retention of less hydrophobic pharmaceutical solutes in RP-LC.
    Udrescu S; Medvedovici A; David V
    J Sep Sci; 2008 Sep; 31(16-17):2939-45. PubMed ID: 18785144
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quantitative evaluation of models for solvent-based, on-column focusing in liquid chromatography.
    Groskreutz SR; Weber SG
    J Chromatogr A; 2015 Aug; 1409():116-24. PubMed ID: 26210110
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Elution mechanism of polypeptides in reversed-phase liquid chromatography based on the critical threshold of organic solvent to induce abrupt change in adsorption capacity to the column packing.
    Goda R; Sudo K
    Biomed Chromatogr; 2008 Jan; 22(1):81-91. PubMed ID: 17685410
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.