BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 12542231)

  • 1. Deterioration in learning and memory of inferential tasks for evaluation of transitivity and symmetry in aged SAMP8 mice.
    Ohta A; Akiguchi I; Seriu N; Ohnishi K; Yagi H; Higuchi K; Hosokawa M
    Hippocampus; 2002; 12(6):803-10. PubMed ID: 12542231
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ameliorative effects of lotus seedpod proanthocyanidins on cognitive deficits and oxidative damage in senescence-accelerated mice.
    Gong Y; Liu L; Xie B; Liao Y; Yang E; Sun Z
    Behav Brain Res; 2008 Dec; 194(1):100-7. PubMed ID: 18652848
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Experimental techniques for developing new drugs acting on dementia (8)--Characteristics of behavioral disorders in senescence-accelerated mouse (SAMP8): possible animal model for dementia].
    Miyamoto M
    Nihon Shinkei Seishin Yakurigaku Zasshi; 1994 Oct; 14(5):323-35. PubMed ID: 7856329
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Age related changes of various markers of astrocytes in senescence-accelerated mice hippocampus.
    Wu Y; Zhang AQ; Yew DT
    Neurochem Int; 2005 Jun; 46(7):565-74. PubMed ID: 15843051
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Age-related changes in anxiety are task-specific in the senescence-accelerated prone mouse 8.
    Chen GH; Wang C; Yangcheng HY; Liu RY; Zhou JN
    Physiol Behav; 2007 Aug; 91(5):644-51. PubMed ID: 17481677
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accelerated senescence prone mouse-8 shows early onset of deficits in spatial learning and memory in the radial six-arm water maze.
    Chen GH; Wang YJ; Wang XM; Zhou JN
    Physiol Behav; 2004 Oct; 82(5):883-90. PubMed ID: 15451654
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Age-related expression of adenosine receptors in brain from the senescence-accelerated mouse.
    Castillo CA; Albasanz JL; León D; Jordán J; Pallàs M; Camins A; Martín M
    Exp Gerontol; 2009; 44(6-7):453-61. PubMed ID: 19410642
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cholinesterase activity in brain of senescence-accelerated-resistant mouse SAMR1 and its variation in brain of senescence-accelerated-prone mouse SAMP8.
    Fernández-Gómez FJ; Muñoz-Delgado E; Montenegro MF; Campoy FJ; Vidal CJ; Jordán J
    J Neurosci Res; 2010 Jan; 88(1):155-66. PubMed ID: 19610099
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acupuncture improves cognitive deficits and regulates the brain cell proliferation of SAMP8 mice.
    Cheng H; Yu J; Jiang Z; Zhang X; Liu C; Peng Y; Chen F; Qu Y; Jia Y; Tian Q; Xiao C; Chu Q; Nie K; Kan B; Hu X; Han J
    Neurosci Lett; 2008 Feb; 432(2):111-6. PubMed ID: 18215464
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chronic stress impairs learning and hippocampal cell proliferation in senescence-accelerated prone mice.
    Yan W; Zhang T; Jia W; Sun X; Liu X
    Neurosci Lett; 2011 Feb; 490(2):85-9. PubMed ID: 21184809
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Defects of immune cells in the senescence-accelerated mouse: a model for learning and memory deficits in the aged.
    Abe Y; Yuasa M; Kajiwara Y; Hosono M
    Cell Immunol; 1994 Aug; 157(1):59-69. PubMed ID: 8039253
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Learning capabilities and CA1-prefrontal synaptic plasticity in a mice model of accelerated senescence.
    López-Ramos JC; Jurado-Parras MT; Sanfeliu C; Acuña-Castroviejo D; Delgado-García JM
    Neurobiol Aging; 2012 Mar; 33(3):627.e13-26. PubMed ID: 21664007
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential gene expression profiles in the hippocampus of senescence-accelerated mouse.
    Cheng XR; Zhou WX; Zhang YX; Zhou DS; Yang RF; Chen LF
    Neurobiol Aging; 2007 Apr; 28(4):497-506. PubMed ID: 16569465
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NMR-based metabonomic investigations into the metabolic profile of the senescence-accelerated mouse.
    Jiang N; Yan X; Zhou W; Zhang Q; Chen H; Zhang Y; Zhang X
    J Proteome Res; 2008 Sep; 7(9):3678-86. PubMed ID: 18656976
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrastructural and permeability features of microvessels in the periventricular area of senescence-accelerated mice (SAM).
    Ueno M; Sakamoto H; Kanenishi K; Onodera M; Akiguchi I; Hosokawa M
    Microsc Res Tech; 2001 May; 53(3):232-8. PubMed ID: 11301499
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of neuronal nitric oxide synthase expression and increasing astrogliosis in the brain of senescence-accelerated-prone 8 mice.
    Han S; Rudd JA; Hu ZY; Zhang L; Yew DT; Fang M
    Int J Neurosci; 2010 Sep; 120(9):602-8. PubMed ID: 20707635
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long-term ginsenoside consumption prevents memory loss in aged SAMP8 mice by decreasing oxidative stress and up-regulating the plasticity-related proteins in hippocampus.
    Zhao H; Li Q; Zhang Z; Pei X; Wang J; Li Y
    Brain Res; 2009 Feb; 1256():111-22. PubMed ID: 19133247
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Age-related changes of anti-elastin antibodies in senescence-accelerated mice.
    Atanasova M; Konova E; Georgieva M; Dimitrova A; Coquand-Gandit M; Faury G; Baydanoff S
    Gerontology; 2010; 56(3):310-8. PubMed ID: 19752527
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increased expression of cathepsins E and D in reactive microglial cells associated with spongiform degeneration in the brain stem of senescence-accelerated mouse.
    Amano T; Nakanishi H; Oka M; Yamamoto K
    Exp Neurol; 1995 Dec; 136(2):171-82. PubMed ID: 7498407
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sleep wake profile and EEG spectral power in young or old senescence accelerated mice.
    Colas D; Cespuglio R; Sarda N
    Neurobiol Aging; 2005 Feb; 26(2):265-73. PubMed ID: 15582754
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.