These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Probabilistic atlas can improve reconstruction from optical imaging of the neonatal brain. Heiskala J; Pollari M; Metsäranta M; Grant PE; Nissilä I Opt Express; 2009 Aug; 17(17):14977-92. PubMed ID: 19687976 [TBL] [Abstract][Full Text] [Related]
5. Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging. Culver JP; Choe R; Holboke MJ; Zubkov L; Durduran T; Slemp A; Ntziachristos V; Chance B; Yodh AG Med Phys; 2003 Feb; 30(2):235-47. PubMed ID: 12607841 [TBL] [Abstract][Full Text] [Related]
6. Tomographic time-of-flight optical imaging device. Benaron DA; Ho DC; Spilman S; Van Houten JP; Stevenson DK Adv Exp Med Biol; 1994; 361():207-14. PubMed ID: 7597945 [TBL] [Abstract][Full Text] [Related]
9. Image reconstruction in lens-based intensity diffraction tomography. Huang Y; Anastasio MA J Opt Soc Am A Opt Image Sci Vis; 2009 Jun; 26(6):1335-47. PubMed ID: 19488173 [TBL] [Abstract][Full Text] [Related]
10. Determination of the optical properties of a two-layer tissue model by detecting photons migrating at progressively increasing depths. Fawzi YS; Youssef AB; el-Batanony MH; Kadah YM Appl Opt; 2003 Nov; 42(31):6398-411. PubMed ID: 14649284 [TBL] [Abstract][Full Text] [Related]
11. The application of compressed sensing for photo-acoustic tomography. Provost J; Lesage F IEEE Trans Med Imaging; 2009 Apr; 28(4):585-94. PubMed ID: 19272991 [TBL] [Abstract][Full Text] [Related]
12. Fluorescence-enhanced optical imaging in large tissue volumes using a gain-modulated ICCD camera. Godavarty A; Eppstein MJ; Zhang C; Theru S; Thompson AB; Gurfinkel M; Sevick-Muraca EM Phys Med Biol; 2003 Jun; 48(12):1701-20. PubMed ID: 12870578 [TBL] [Abstract][Full Text] [Related]
13. Signal degradation by multiple scattering in optical coherence tomography of dense tissue: a Monte Carlo study towards optical clearing of biotissues. Wang RK Phys Med Biol; 2002 Jul; 47(13):2281-99. PubMed ID: 12164587 [TBL] [Abstract][Full Text] [Related]
14. Calibration of a portal imaging device for high-precision dosimetry: a Monte Carlo study. Keller H; Fix M; Rüegsegger P Med Phys; 1998 Oct; 25(10):1891-902. PubMed ID: 9800696 [TBL] [Abstract][Full Text] [Related]
15. Optical imaging of breast tumor through temporal log-slope difference mappings. Guo Z; Kan Wan S; August DA; Ying J; Dunn SM; Semmlow JL Comput Biol Med; 2006 Feb; 36(2):209-23. PubMed ID: 16389079 [TBL] [Abstract][Full Text] [Related]
16. Feasibility of Monte Carlo simulations in quantitative tissue imaging. Maeder U; Schmidts T; Avci E; Heverhagen JT; Runkel F; Fiebich M Int J Artif Organs; 2010 Apr; 33(4):253-9. PubMed ID: 20458695 [TBL] [Abstract][Full Text] [Related]
17. Review of polarization sensitive optical coherence tomography and Stokes vector determination. de Boer JF; Milner TE J Biomed Opt; 2002 Jul; 7(3):359-71. PubMed ID: 12175285 [TBL] [Abstract][Full Text] [Related]
18. Three-dimensional optical tomographic imaging of breast in a human subject. Jiang H; Xu Y; Iftimia N; Eggert J; Klove K; Baron L; Fajardo L IEEE Trans Med Imaging; 2001 Dec; 20(12):1334-40. PubMed ID: 11811833 [TBL] [Abstract][Full Text] [Related]