These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 12542422)

  • 1. Modeling of self-organized avascular tumor growth with a hybrid cellular automaton.
    Dormann S; Deutsch A
    In Silico Biol; 2002; 2(3):393-406. PubMed ID: 12542422
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The migration of cells in multicell tumor spheroids.
    Pettet GJ; Please CP; Tindall MJ; McElwain DL
    Bull Math Biol; 2001 Mar; 63(2):231-57. PubMed ID: 11276525
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modelling the cell cycle and cell movement in multicellular tumour spheroids.
    Tindall MJ; Please CP
    Bull Math Biol; 2007 May; 69(4):1147-65. PubMed ID: 17372784
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new mathematical model for avascular tumour growth.
    Sherratt JA; Chaplain MA
    J Math Biol; 2001 Oct; 43(4):291-312. PubMed ID: 12120870
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modelling acidosis and the cell cycle in multicellular tumour spheroids.
    Tindall MJ; Dyson L; Smallbone K; Maini PK
    J Theor Biol; 2012 Apr; 298():107-15. PubMed ID: 22155133
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Implication of necrosis-linked p53 aggregation in acquired apoptotic resistance to 5-FU in MCF-7 multicellular tumour spheroids.
    Lee SY; Jeong EK; Jeon HM; Kim CH; Kang HS
    Oncol Rep; 2010 Jul; 24(1):73-9. PubMed ID: 20514446
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modelling the formation of necrotic regions in avascular tumours.
    Tindall MJ; Please CP; Peddie MJ
    Math Biosci; 2008 Jan; 211(1):34-55. PubMed ID: 18082225
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An agent-based computational approach for representing aspects of in vitro multi-cellular tumor spheroid growth.
    Chen S; Ganguli S; Hunt CA
    Conf Proc IEEE Eng Med Biol Soc; 2004; 2006():691-4. PubMed ID: 17271771
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Growth of necrotic tumors in the presence and absence of inhibitors.
    Byrne HM; Chaplin MA
    Math Biosci; 1996 Jul; 135(2):187-216. PubMed ID: 8768220
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling mechanical inhomogeneities in small populations of proliferating monolayers and spheroids.
    Lejeune E; Linder C
    Biomech Model Mechanobiol; 2018 Jun; 17(3):727-743. PubMed ID: 29197990
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An on-lattice agent-based Monte Carlo model simulating the growth kinetics of multicellular tumor spheroids.
    Ruiz-Arrebola S; Tornero-López AM; Guirado D; Villalobos M; Lallena AM
    Phys Med; 2020 Sep; 77():194-203. PubMed ID: 32882615
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mathematical modeling of the proliferation gradient in multicellular tumor spheroids.
    Michel T; Fehrenbach J; Lobjois V; Laurent J; Gomes A; Colin T; Poignard C
    J Theor Biol; 2018 Dec; 458():133-147. PubMed ID: 30145131
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reaction-diffusion model for the growth of avascular tumor.
    Ferreira SC; Martins ML; Vilela MJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Feb; 65(2 Pt 1):021907. PubMed ID: 11863563
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formulation and numerical simulations of a continuum model of avascular tumor growth.
    Mahmood MS; Mahmood S; Dobrota D
    Math Biosci; 2011 Jun; 231(2):159-71. PubMed ID: 21396381
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A quantitative cellular automaton model of in vitro multicellular spheroid tumour growth.
    Piotrowska MJ; Angus SD
    J Theor Biol; 2009 May; 258(2):165-78. PubMed ID: 19248794
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mathematical modelling reveals cellular dynamics within tumour spheroids.
    Bull JA; Mech F; Quaiser T; Waters SL; Byrne HM
    PLoS Comput Biol; 2020 Aug; 16(8):e1007961. PubMed ID: 32810174
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cell migration in multicell spheroids: swimming against the tide.
    McElwain DL; Pettet GJ
    Bull Math Biol; 1993 May; 55(3):655-74. PubMed ID: 8364422
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Continuum versus discrete model: a comparison for multicellular tumour spheroids.
    Schaller G; Meyer-Hermann M
    Philos Trans A Math Phys Eng Sci; 2006 Jun; 364(1843):1443-64. PubMed ID: 16766354
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In situ oxygen consumption rates of cells in V-79 multicellular spheroids during growth.
    Freyer JP; Tustanoff E; Franko AJ; Sutherland RM
    J Cell Physiol; 1984 Jan; 118(1):53-61. PubMed ID: 6690452
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [A logistic cellular automaton for simulating tumor growth].
    Hu R; Ruan X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2003 Mar; 20(1):79-82. PubMed ID: 12744169
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.