These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 12542693)
1. Elementary modes analysis of photosynthate metabolism in the chloroplast stroma. Poolman MG; Fell DA; Raines CA Eur J Biochem; 2003 Feb; 270(3):430-9. PubMed ID: 12542693 [TBL] [Abstract][Full Text] [Related]
2. A mathematical model of the Calvin photosynthesis cycle. Pettersson G; Ryde-Pettersson U Eur J Biochem; 1988 Aug; 175(3):661-72. PubMed ID: 3137030 [TBL] [Abstract][Full Text] [Related]
3. Regulation of photosynthetic carbon metabolism. The effect of inorganic phosphate on stromal sedoheptulose-1,7-bisphosphatase. Woodrow IE; Murphy DJ; Walker DA Eur J Biochem; 1983 Apr; 132(1):121-3. PubMed ID: 6301819 [TBL] [Abstract][Full Text] [Related]
4. The metabolic significance of octulose phosphates in the photosynthetic carbon reduction cycle in spinach. Williams JF; MacLeod JK Photosynth Res; 2006 Nov; 90(2):125-48. PubMed ID: 17160443 [TBL] [Abstract][Full Text] [Related]
6. Modelling photosynthesis and its control. Poolman MG; Fell DA; Thomas S J Exp Bot; 2000 Feb; 51 Spec No():319-28. PubMed ID: 10938839 [TBL] [Abstract][Full Text] [Related]
7. The oxidative pentose phosphate pathway in photosynthesis: a tale of two shunts. Xu Y; Schmiege SC; Sharkey TD New Phytol; 2024 Jun; 242(6):2453-2463. PubMed ID: 38567702 [TBL] [Abstract][Full Text] [Related]
8. A rapid-equilibrium model for the control of the Calvin photosynthesis cycle by cytosolic orthophosphate. Pettersson G; Ryde-Pettersson U Eur J Biochem; 1987 Dec; 169(2):423-9. PubMed ID: 3691500 [TBL] [Abstract][Full Text] [Related]
9. Model studies of the regulation of the Calvin photosynthesis cycle by cytosolic metabolites. Pettersson G; Ryde-Pettersson U Biomed Biochim Acta; 1990; 49(8-9):723-32. PubMed ID: 2128020 [TBL] [Abstract][Full Text] [Related]
10. Cold acclimation of Arabidopsis thaliana results in incomplete recovery of photosynthetic capacity, associated with an increased reduction of the chloroplast stroma. Savitch LV; Barker-Astrom J; Ivanov AG; Hurry V; Oquist G; Huner NP; Gardeström P Planta; 2001 Dec; 214(2):295-303. PubMed ID: 11800395 [TBL] [Abstract][Full Text] [Related]
11. The reductive pentose phosphate cycle for photosynthetic CO2 assimilation: enzyme modulation. Wolosiuk RA; Ballicora MA; Hagelin K FASEB J; 1993 May; 7(8):622-37. PubMed ID: 8500687 [TBL] [Abstract][Full Text] [Related]
12. Regulation of photosynthetic carbon metabolism during phosphate limitation of photosynthesis in isolated spinach chloroplasts. Giersch C; Robinson SP Photosynth Res; 1987 Jan; 14(3):211-27. PubMed ID: 24430736 [TBL] [Abstract][Full Text] [Related]
13. Effects of inorganic phosphate on the photosynthetic carbon reduction cycle in extracts from the stroma of pea chloroplasts. Furbank RT; Lilley RM Biochim Biophys Acta; 1980 Aug; 592(1):65-75. PubMed ID: 6772219 [TBL] [Abstract][Full Text] [Related]
14. Overexpression of bifunctional fructose-1,6-bisphosphatase/sedoheptulose-1,7-bisphosphatase leads to enhanced photosynthesis and global reprogramming of carbon metabolism in Synechococcus sp. PCC 7002. De Porcellinis AJ; Nørgaard H; Brey LMF; Erstad SM; Jones PR; Heazlewood JL; Sakuragi Y Metab Eng; 2018 May; 47():170-183. PubMed ID: 29510212 [TBL] [Abstract][Full Text] [Related]
15. Electron flow to photosystem I from stromal reductants in vivo: the size of the pool of stromal reductants controls the rate of electron donation to both rapidly and slowly reducing photosystem I units. Bukhov N; Egorova E; Carpentier R Planta; 2002 Sep; 215(5):812-20. PubMed ID: 12244447 [TBL] [Abstract][Full Text] [Related]
16. Regulation of stromal sedoheptulose 1,7-bisphosphatase activity by pH and Mg2+ concentration. Woodrow IE; Murphy DJ; Latzko E J Biol Chem; 1984 Mar; 259(6):3791-5. PubMed ID: 6323441 [TBL] [Abstract][Full Text] [Related]
17. An Arabidopsis thaliana knock-out mutant of the chloroplast triose phosphate/phosphate translocator is severely compromised only when starch synthesis, but not starch mobilisation is abolished. Schneider A; Häusler RE; Kolukisaoglu U; Kunze R; van der Graaff E; Schwacke R; Catoni E; Desimone M; Flügge UI Plant J; 2002 Dec; 32(5):685-99. PubMed ID: 12472685 [TBL] [Abstract][Full Text] [Related]
18. Influence of glycerate on photosynthesis by wheat chloroplasts. Edwards GE; Walker DA Arch Biochem Biophys; 1984 May; 231(1):124-35. PubMed ID: 6326672 [TBL] [Abstract][Full Text] [Related]
19. The distribution of metabolites between spinach chloroplasts and medium during photosynthesis in vitro. Lilley RM; Chon CJ; Mosbach A; Heldt HW Biochim Biophys Acta; 1977 May; 460(2):259-72. PubMed ID: 870037 [TBL] [Abstract][Full Text] [Related]
20. Combining isotopically non-stationary metabolic flux analysis with proteomics to unravel the regulation of the Calvin-Benson-Bassham cycle in Synechocystis sp. PCC 6803. Yu King Hing N; Liang F; Lindblad P; Morgan JA Metab Eng; 2019 Dec; 56():77-84. PubMed ID: 31470115 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]