These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
256 related articles for article (PubMed ID: 12543979)
21. Transforming growth factor beta-independent shuttling of Smad4 between the cytoplasm and nucleus. Pierreux CE; Nicolás FJ; Hill CS Mol Cell Biol; 2000 Dec; 20(23):9041-54. PubMed ID: 11074002 [TBL] [Abstract][Full Text] [Related]
22. Tumor suppressor Smad4 is a transforming growth factor beta-inducible DNA binding protein. Yingling JM; Datto MB; Wong C; Frederick JP; Liberati NT; Wang XF Mol Cell Biol; 1997 Dec; 17(12):7019-28. PubMed ID: 9372933 [TBL] [Abstract][Full Text] [Related]
23. Targeting endogenous transforming growth factor beta receptor signaling in SMAD4-deficient human pancreatic carcinoma cells inhibits their invasive phenotype1. Subramanian G; Schwarz RE; Higgins L; McEnroe G; Chakravarty S; Dugar S; Reiss M Cancer Res; 2004 Aug; 64(15):5200-11. PubMed ID: 15289325 [TBL] [Abstract][Full Text] [Related]
24. Hepatocellular cancer arises from loss of transforming growth factor beta signaling adaptor protein embryonic liver fodrin through abnormal angiogenesis. Baek HJ; Lim SC; Kitisin K; Jogunoori W; Tang Y; Marshall MB; Mishra B; Kim TH; Cho KH; Kim SS; Mishra L Hepatology; 2008 Oct; 48(4):1128-37. PubMed ID: 18704924 [TBL] [Abstract][Full Text] [Related]
25. Cell cycle deregulation and loss of stem cell phenotype in the subventricular zone of TGF-beta adaptor elf-/- mouse brain. Golestaneh N; Tang Y; Katuri V; Jogunoori W; Mishra L; Mishra B Brain Res; 2006 Sep; 1108(1):45-53. PubMed ID: 16884701 [TBL] [Abstract][Full Text] [Related]
26. Interaction between Smad anchor for receptor activation and Smad3 is not essential for TGF-beta/Smad3-mediated signaling. Goto D; Nakajima H; Mori Y; Kurasawa K; Kitamura N; Iwamoto I Biochem Biophys Res Commun; 2001 Mar; 281(5):1100-5. PubMed ID: 11243848 [TBL] [Abstract][Full Text] [Related]
27. p38 MAPK mediates fibrogenic signal through Smad3 phosphorylation in rat myofibroblasts. Furukawa F; Matsuzaki K; Mori S; Tahashi Y; Yoshida K; Sugano Y; Yamagata H; Matsushita M; Seki T; Inagaki Y; Nishizawa M; Fujisawa J; Inoue K Hepatology; 2003 Oct; 38(4):879-89. PubMed ID: 14512875 [TBL] [Abstract][Full Text] [Related]
29. Transforming growth factor-beta and platelet-derived growth factor signal via c-Jun N-terminal kinase-dependent Smad2/3 phosphorylation in rat hepatic stellate cells after acute liver injury. Yoshida K; Matsuzaki K; Mori S; Tahashi Y; Yamagata H; Furukawa F; Seki T; Nishizawa M; Fujisawa J; Okazaki K Am J Pathol; 2005 Apr; 166(4):1029-39. PubMed ID: 15793284 [TBL] [Abstract][Full Text] [Related]
30. SARA, a FYVE domain protein that recruits Smad2 to the TGFbeta receptor. Tsukazaki T; Chiang TA; Davison AF; Attisano L; Wrana JL Cell; 1998 Dec; 95(6):779-91. PubMed ID: 9865696 [TBL] [Abstract][Full Text] [Related]
31. The murine gastrin promoter is synergistically activated by transforming growth factor-beta/Smad and Wnt signaling pathways. Lei S; Dubeykovskiy A; Chakladar A; Wojtukiewicz L; Wang TC J Biol Chem; 2004 Oct; 279(41):42492-502. PubMed ID: 15292219 [TBL] [Abstract][Full Text] [Related]
32. Smads 2 and 3 are differentially activated by transforming growth factor-beta (TGF-beta ) in quiescent and activated hepatic stellate cells. Constitutive nuclear localization of Smads in activated cells is TGF-beta-independent. Liu C; Gaça MD; Swenson ES; Vellucci VF; Reiss M; Wells RG J Biol Chem; 2003 Mar; 278(13):11721-8. PubMed ID: 12547835 [TBL] [Abstract][Full Text] [Related]
33. Functional cloning of the proto-oncogene brain factor-1 (BF-1) as a Smad-binding antagonist of transforming growth factor-beta signaling. Rodriguez C; Huang LJ; Son JK; McKee A; Xiao Z; Lodish HF J Biol Chem; 2001 Aug; 276(32):30224-30. PubMed ID: 11387330 [TBL] [Abstract][Full Text] [Related]
34. Overexpression of Smad2 reveals its concerted action with Smad4 in regulating TGF-beta-mediated epidermal homeostasis. Ito Y; Sarkar P; Mi Q; Wu N; Bringas P; Liu Y; Reddy S; Maxson R; Deng C; Chai Y Dev Biol; 2001 Aug; 236(1):181-94. PubMed ID: 11456453 [TBL] [Abstract][Full Text] [Related]
35. Alterations of Smad signaling in human breast carcinoma are associated with poor outcome: a tissue microarray study. Xie W; Mertens JC; Reiss DJ; Rimm DL; Camp RL; Haffty BG; Reiss M Cancer Res; 2002 Jan; 62(2):497-505. PubMed ID: 11809701 [TBL] [Abstract][Full Text] [Related]
36. Phosphorylation of Ser465 and Ser467 in the C terminus of Smad2 mediates interaction with Smad4 and is required for transforming growth factor-beta signaling. Souchelnytskyi S; Tamaki K; Engström U; Wernstedt C; ten Dijke P; Heldin CH J Biol Chem; 1997 Oct; 272(44):28107-15. PubMed ID: 9346966 [TBL] [Abstract][Full Text] [Related]
37. The role of internalization in transforming growth factor beta1-induced Smad2 association with Smad anchor for receptor activation (SARA) and Smad2-dependent signaling in human mesangial cells. Runyan CE; Schnaper HW; Poncelet AC J Biol Chem; 2005 Mar; 280(9):8300-8. PubMed ID: 15613484 [TBL] [Abstract][Full Text] [Related]
39. Smad proteins and hepatocyte growth factor control parallel regulatory pathways that converge on beta1-integrin to promote normal liver development. Weinstein M; Monga SP; Liu Y; Brodie SG; Tang Y; Li C; Mishra L; Deng CX Mol Cell Biol; 2001 Aug; 21(15):5122-31. PubMed ID: 11438667 [TBL] [Abstract][Full Text] [Related]
40. The role of PRAJA and ELF in TGF-beta signaling and gastric cancer. Mishra L; Katuri V; Evans S Cancer Biol Ther; 2005 Jul; 4(7):694-9. PubMed ID: 16096365 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]