These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 12544021)

  • 1. The effect of prosthesis design on vibration of the reconstructed ossicular chain: a comparative finite element analysis of four prostheses.
    Kelly DJ; Prendergast PJ; Blayney AW
    Otol Neurotol; 2003 Jan; 24(1):11-9. PubMed ID: 12544021
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Restoring hearing using total ossicular replacement prostheses--analysis of 3D finite element model.
    Yao W; Li B; Huang X; Guo C; Luo X; Zhou W; Duan M
    Acta Otolaryngol; 2012 Feb; 132(2):152-9. PubMed ID: 22201262
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and experimental analysis of a new malleovestibulopexy prosthesis using a finite element model of the human middle ear.
    Vallejo Valdezate LA; Hidalgo Otamendi A; Hernández A; Lobo F; Gil-Carcedo Sañudo E; Gil-Carcedo García LM
    Acta Otorrinolaringol Esp; 2015; 66(1):16-27. PubMed ID: 24852513
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Middle-ear dynamics before and after ossicular replacement.
    Ferris P; Prendergast PJ
    J Biomech; 2000 May; 33(5):581-90. PubMed ID: 10708779
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vibro-acoustic modelling of the outer and middle ear using the finite-element method.
    Prendergast PJ; Ferris P; Rice HJ; Blayney AW
    Audiol Neurootol; 1999; 4(3-4):185-91. PubMed ID: 10187928
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The natural vibration characteristics of human ossicles.
    Chou CF; Yu JF; Chen CK
    Chang Gung Med J; 2011; 34(2):160-5. PubMed ID: 21539757
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The biomechanical effects of stapes replacement by prostheses on the tympano-ossicular chain.
    Gentil F; Garbe C; Parente M; Martins P; Santos C; Almeida E; Jorge RN
    Int J Numer Method Biomed Eng; 2014 Dec; 30(12):1409-20. PubMed ID: 25045115
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A 3-D finite element analysis of the natural frequencies of vibration of a stapes prosthesis replacement reconstruction of the middle ear.
    Williams KR; Blayney AW; Lesser TH
    Clin Otolaryngol Allied Sci; 1995 Feb; 20(1):36-44. PubMed ID: 7788932
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Titanium ball joint total ossicular replacement prosthesis--experimental evaluation and midterm clinical results.
    Gostian AO; Pazen D; Luers JC; Huttenbrink KB; Beutner D
    Hear Res; 2013 Jul; 301():100-4. PubMed ID: 23142147
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New total ossicular replacement prostheses with a resilient joint: experimental data from human temporal bones.
    Arechvo I; Bornitz M; Lasurashvili N; Zahnert T; Beleites T
    Otol Neurotol; 2012 Jan; 33(1):60-6. PubMed ID: 22143295
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A three-dimensional finite element model of round window membrane vibration before and after stapedotomy surgery.
    Kwacz M; Marek P; Borkowski P; Mrówka M
    Biomech Model Mechanobiol; 2013 Nov; 12(6):1243-61. PubMed ID: 23462937
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Measuring vibration properties of middle ear implants with the mechanical middle ear model. Initial results].
    Meister H; Walger M; Mickenhagen A; Stennert E
    HNO; 1998 Mar; 46(3):241-5. PubMed ID: 9583029
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparative study of MED-EL FMT attachment to the long process of the incus in intact middle ears and its attachment to disarticulated stapes head.
    Chen T; Ren LJ; Yin DM; Li J; Yang L; Dai PD; Zhang TY
    Hear Res; 2017 Sep; 353():97-103. PubMed ID: 28666703
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A silastic prosthesis for total replacement of the middle-ear ossicular chain, its acoustic properties and clinical application.
    Voldrich Z; Skvor Z; Novák V; Zelený M; Rufer L
    Polim Med; 1989; 19(3-4):127-36. PubMed ID: 2641402
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A dynamic and harmonic damped finite element analysis model of stapedotomy.
    Blayney AW; Williams KR; Rice HJ
    Acta Otolaryngol; 1997 Mar; 117(2):269-73. PubMed ID: 9105464
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Middle ear mechanics and their interface with respect to implantable electronic otologic devices.
    Hüttenbrink KB
    Otolaryngol Clin North Am; 2001 Apr; 34(2):315-35. PubMed ID: 11382573
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A single-ossicle ear: Acoustic response and mechanical properties measured in duck.
    Muyshondt PGG; Soons JAM; De Greef D; Pires F; Aerts P; Dirckx JJJ
    Hear Res; 2016 Oct; 340():35-42. PubMed ID: 26723104
    [TBL] [Abstract][Full Text] [Related]  

  • 18. De novo topology optimization of total ossicular replacement prostheses.
    Milazzo M; Muyshondt PGG; Carstensen J; Dirckx JJJ; Danti S; Buehler MJ
    J Mech Behav Biomed Mater; 2020 Mar; 103():103541. PubMed ID: 31786510
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimum tension for partial ossicular replacement prosthesis reconstruction in the human middle ear.
    Morris DP; Bance M; van Wijhe RG; Kiefte M; Smith R
    Laryngoscope; 2004 Feb; 114(2):305-8. PubMed ID: 14755209
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Osseointegration of prostheses on the stapes footplate: evaluation of the biomechanical feasibility by using a finite element model.
    Neudert M; Berner M; Bornitz M; Beleites T; Ney M; Zahnert T
    J Assoc Res Otolaryngol; 2007 Dec; 8(4):411-21. PubMed ID: 17828428
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.