These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
362 related articles for article (PubMed ID: 12544233)
1. Reconstruction of the immature craniofacial skeleton with a carbonated calcium phosphate bone cement: interaction with bioresorbable mesh. Losee JE; Karmacharya J; Gannon FH; Slemp AE; Ong G; Hunenko O; Gorden AD; Bartlett SP; Kirschner RE J Craniofac Surg; 2003 Jan; 14(1):117-24. PubMed ID: 12544233 [TBL] [Abstract][Full Text] [Related]
2. Repair of the immature and mature craniofacial skeleton with a carbonated calcium phosphate cement: assessment of biocompatibility, osteoconductivity, and remodeling capacity. Smartt JM; Karmacharya J; Gannon FH; Ong G; Jackson O; Bartlett SP; Poser RD; Kirschner RE Plast Reconstr Surg; 2005 May; 115(6):1642-50. PubMed ID: 15861069 [TBL] [Abstract][Full Text] [Related]
3. Repair of the immature craniofacial skeleton with a calcium phosphate cement: quantitative assessment of craniofacial growth. Kirschner RE; Karmacharya J; Ong G; Gordon AD; Hunenko O; Losee JE; Gannon FH; Bartlett SP Ann Plast Surg; 2002 Jul; 49(1):33-8; discussion 38. PubMed ID: 12142592 [TBL] [Abstract][Full Text] [Related]
4. Magnesium-based bone cement and bone void filler: preliminary experimental studies. Schendel SA; Peauroi J J Craniofac Surg; 2009 Mar; 20(2):461-4. PubMed ID: 19305245 [TBL] [Abstract][Full Text] [Related]
5. Poly-D-L-Lactic Acid Membranes for Bone Regeneration. Annunziata M; Nastri L; Borgonovo A; Benigni M; Poli PP J Craniofac Surg; 2015 Jul; 26(5):1691-6. PubMed ID: 26114511 [TBL] [Abstract][Full Text] [Related]
6. Histomorphometric evaluation of bone regeneration using allogeneic and alloplastic bone substitutes. Moghadam HG; Sándor GK; Holmes HH; Clokie CM J Oral Maxillofac Surg; 2004 Feb; 62(2):202-13. PubMed ID: 14762753 [TBL] [Abstract][Full Text] [Related]
7. Compartmentalized bone regeneration of cranial defects with biodegradable barriers--effects of calcium sodium phosphate surface coatings on LactoSorb. Eppley BL; Stal S; Hollier L; Kumar M J Craniofac Surg; 2002 Sep; 13(5):681-6. PubMed ID: 12218798 [TBL] [Abstract][Full Text] [Related]
9. Bony healing of large cranial and mandibular defects protected from soft-tissue interposition: A comparative study of spontaneous bone regeneration, osteoconduction, and cancellous autografting in dogs. Lemperle SM; Calhoun CJ; Curran RW; Holmes RE Plast Reconstr Surg; 1998 Mar; 101(3):660-72. PubMed ID: 9500382 [TBL] [Abstract][Full Text] [Related]
10. Mechanical evaluation of implanted calcium phosphate cement incorporated with PLGA microparticles. Link DP; van den Dolder J; Jurgens WJ; Wolke JG; Jansen JA Biomaterials; 2006 Oct; 27(28):4941-7. PubMed ID: 16759694 [TBL] [Abstract][Full Text] [Related]
11. Norian craniofacial repair system: compatibility with resorbable and nonresorbable plating materials. Genecov DG; Kremer M; Agarwal R; Salyer KE; Barcelo CR; Aberman HM; Opperman LA Plast Reconstr Surg; 2007 Nov; 120(6):1487-1495. PubMed ID: 18040178 [TBL] [Abstract][Full Text] [Related]
12. Assessment of bone healing ability of calcium phosphate cements loaded with platelet lysate in rat calvarial defects. Babo PS; Carvalho PP; Santo VE; Faria S; Gomes ME; Reis RL J Biomater Appl; 2016 Nov; 31(5):637-649. PubMed ID: 27638154 [TBL] [Abstract][Full Text] [Related]
13. Porous poly(DL-lactic-co-glycolic acid)/calcium phosphate cement composite for reconstruction of bone defects. Ruhé PQ; Hedberg-Dirk EL; Padron NT; Spauwen PH; Jansen JA; Mikos AG Tissue Eng; 2006 Apr; 12(4):789-800. PubMed ID: 16674292 [TBL] [Abstract][Full Text] [Related]
14. Biomechanical and histologic evaluation of the Norian craniofacial repair system and Norian Craniofacial Repair System Fast Set Putty in the long-term reconstruction of full-thickness skull defects in a sheep model. Zins JE; Moreira-Gonzalez A; Parikh A; Arslan E; Bauer T; Siemionow M Plast Reconstr Surg; 2008 May; 121(5):271e-282e. PubMed ID: 18453939 [TBL] [Abstract][Full Text] [Related]
15. Enhancement of bone regeneration using resorbable ceramics and a polymer-ceramic composite material. Schliephake H; Kage T J Biomed Mater Res; 2001 Jul; 56(1):128-36. PubMed ID: 11309799 [TBL] [Abstract][Full Text] [Related]
16. The use of hydroxyapatite and autogenous cancellous bone grafts to repair bone defects in rats. Silva RV; Camilli JA; Bertran CA; Moreira NH Int J Oral Maxillofac Surg; 2005 Mar; 34(2):178-84. PubMed ID: 15695048 [TBL] [Abstract][Full Text] [Related]
17. Use of carbonated calcium phosphate bone cement and resorbable plates for the treatment of frontal sinus fractures: two case reports. Luaces-Rey R; García-Rozado A; Crespo Escudero JL; Seijas BP; Arenaz Búa J; López-Cedrún JL J Plast Reconstr Aesthet Surg; 2009 Feb; 62(2):272-3. PubMed ID: 18708311 [No Abstract] [Full Text] [Related]
18. Bone regeneration of critical calvarial defect in goat model by PLGA/TCP/rhBMP-2 scaffolds prepared by low-temperature rapid-prototyping technology. Yu D; Li Q; Mu X; Chang T; Xiong Z Int J Oral Maxillofac Surg; 2008 Oct; 37(10):929-34. PubMed ID: 18768295 [TBL] [Abstract][Full Text] [Related]
19. Bone augmentation in rabbit calvariae: comparative study between Bio-Oss and a novel beta-TCP/DCPD granulate. Tamimi FM; Torres J; Tresguerres I; Clemente C; López-Cabarcos E; Blanco LJ J Clin Periodontol; 2006 Dec; 33(12):922-8. PubMed ID: 17092243 [TBL] [Abstract][Full Text] [Related]
20. The effect of BMP-2 on the osteoconductive properties of β-tricalcium phosphate in rat calvaria defects. Luvizuto ER; Tangl S; Zanoni G; Okamoto T; Sonoda CK; Gruber R; Okamoto R Biomaterials; 2011 May; 32(15):3855-61. PubMed ID: 21376389 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]