These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 12545283)

  • 41. Learning to use novel objects: a training study on the acquisition of novel action representations.
    van Elk M; Paulus M; Pfeiffer C; van Schie HT; Bekkering H
    Conscious Cogn; 2011 Dec; 20(4):1304-14. PubMed ID: 21641236
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Neural prediction of complex accelerations for object interception.
    de Rugy A; Marinovic W; Wallis G
    J Neurophysiol; 2012 Feb; 107(3):766-71. PubMed ID: 22090456
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Learning to imitate novel motion sequences.
    Agam Y; Galperin H; Gold BJ; Sekuler R
    J Vis; 2007 Mar; 7(5):1.1-17. PubMed ID: 18217841
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Retention and interference of learned dexterous manipulation: interaction between multiple sensorimotor processes.
    Fu Q; Santello M
    J Neurophysiol; 2015 Jan; 113(1):144-55. PubMed ID: 25274349
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Flexible representations of dynamics are used in object manipulation.
    Ahmed AA; Wolpert DM; Flanagan JR
    Curr Biol; 2008 May; 18(10):763-768. PubMed ID: 18485709
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Motion effects on the human operator in a roll axis tracking task.
    Junker AM; Replogle CR
    Aviat Space Environ Med; 1975 Jun; 46(6):819-22. PubMed ID: 1156290
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The learning of visually guided action: an information-space analysis of pole balancing.
    Jacobs DM; Vaz DV; Michaels CF
    J Exp Psychol Hum Percept Perform; 2012 Oct; 38(5):1215-27. PubMed ID: 22428676
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A new paradigm for human stick balancing: a suspended not an inverted pendulum.
    Lee KY; O'Dwyer N; Halaki M; Smith R
    Exp Brain Res; 2012 Sep; 221(3):309-28. PubMed ID: 22797784
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Motion fluency and object preference: Robust perceptual but fragile memory effects.
    Flavell JC; McKean B; Tipper SP; Kirkham AJ; Vestner T; Over H
    J Exp Psychol Learn Mem Cogn; 2019 Sep; 45(9):1569-1582. PubMed ID: 30550317
    [TBL] [Abstract][Full Text] [Related]  

  • 50. LQG framework explains performance of balancing inverted pendulum with incongruent visual feedback.
    Leib R; Cesonis J; Franklin S; Franklin DW
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():1940-1943. PubMed ID: 31946278
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Motion fluency effects on object preference is limited to learned context.
    Flavell JC; McKean B
    PLoS One; 2020; 15(12):e0244110. PubMed ID: 33332442
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Motor memories of object dynamics are categorically organized.
    Cesanek E; Zhang Z; Ingram JN; Wolpert DM; Flanagan JR
    Elife; 2021 Nov; 10():. PubMed ID: 34796873
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Predictability and Robustness in the Manipulation of Dynamically Complex Objects.
    Sternad D; Hasson CJ
    Adv Exp Med Biol; 2016; 957():55-77. PubMed ID: 28035560
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cooperative Dynamic Manipulation of Unknown Flexible Objects: Joint Energy Injection Based on Simple Pendulum Fundamental Dynamics.
    Donner P; Christange F; Lu J; Buss M
    Int J Soc Robot; 2017; 9(4):575-599. PubMed ID: 32010408
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Human-robot planar co-manipulation of extended objects: data-driven models and control from human-human dyads.
    Mielke E; Townsend E; Wingate D; Salmon JL; Killpack MD
    Front Neurorobot; 2024; 18():1291694. PubMed ID: 38410142
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Robot motion command simplification and scaling.
    Young KY; Liu SH
    IEEE Trans Syst Man Cybern B Cybern; 2002; 32(4):455-69. PubMed ID: 18238142
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Learning to push and learning to move: the adaptive control of contact forces.
    Casadio M; Pressman A; Mussa-Ivaldi FA
    Front Comput Neurosci; 2015; 9():118. PubMed ID: 26594163
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Geometric specification of dynamics: learning to visually perceive kinetic quantities from static images.
    Michaels CF; Romaniak-Gross CA
    Perception; 2012; 41(1):93-109. PubMed ID: 22611666
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Flexible prediction of opponent motion with internal representation in interception behavior.
    Tsutsui K; Fujii K; Kudo K; Takeda K
    Biol Cybern; 2021 Oct; 115(5):473-485. PubMed ID: 34379183
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Learning Transferable Push Manipulation Skills in Novel Contexts.
    Howard R; Zito C
    Front Neurorobot; 2021; 15():671775. PubMed ID: 34163346
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.