BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

430 related articles for article (PubMed ID: 12545382)

  • 1. Lactic acid production by Saccharomyces cerevisiae expressing a Rhizopus oryzae lactate dehydrogenase gene.
    Skory CD
    J Ind Microbiol Biotechnol; 2003 Jan; 30(1):22-7. PubMed ID: 12545382
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lactic acid production by Rhizopus oryzae transformants with modified lactate dehydrogenase activity.
    Skory CD
    Appl Microbiol Biotechnol; 2004 Apr; 64(2):237-42. PubMed ID: 14624317
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Screening of a low alcohol dehydrogenase activity mutant of rhizopus oryzae and the regulation of Zn2+ and Mg2+].
    Pan LJ; Fu P; Zheng Z; Luo SZ; Jiang ST
    Wei Sheng Wu Xue Bao; 2006 Aug; 46(4):586-90. PubMed ID: 17037060
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Double mutation of the PDC1 and ADH1 genes improves lactate production in the yeast Saccharomyces cerevisiae expressing the bovine lactate dehydrogenase gene.
    Tokuhiro K; Ishida N; Nagamori E; Saitoh S; Onishi T; Kondo A; Takahashi H
    Appl Microbiol Biotechnol; 2009 Apr; 82(5):883-90. PubMed ID: 19122995
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo regulation of alcohol dehydrogenase and lactate dehydrogenase in Rhizopus oryzae to improve L-lactic acid fermentation.
    Thitiprasert S; Sooksai S; Thongchul N
    Appl Biochem Biotechnol; 2011 Aug; 164(8):1305-22. PubMed ID: 21416338
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Modification of carbon flux in Sacchromyces cerevisiae to improve L-lactic acid production].
    Zhao L; Wang J; Zhou J; Liu L; Du G; Chen J
    Wei Sheng Wu Xue Bao; 2011 Jan; 51(1):50-8. PubMed ID: 21465789
    [TBL] [Abstract][Full Text] [Related]  

  • 7. D-lactic acid production by metabolically engineered Saccharomyces cerevisiae.
    Ishida N; Suzuki T; Tokuhiro K; Nagamori E; Onishi T; Saitoh S; Kitamoto K; Takahashi H
    J Biosci Bioeng; 2006 Feb; 101(2):172-7. PubMed ID: 16569615
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic diversity in Rhizopus oryzae strains as revealed by the sequence of lactate dehydrogenase genes.
    Saito K; Saito A; Ohnishi M; Oda Y
    Arch Microbiol; 2004 Sep; 182(1):30-6. PubMed ID: 15278242
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Metabolic engineering of wild acid-resistant yeast for L-lactic acid production].
    Zhang Q; Zhang L; Ding Z; Wang Z; Shi G
    Sheng Wu Gong Cheng Xue Bao; 2011 Jul; 27(7):1024-31. PubMed ID: 22016986
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Production of L(+)-lactic acid from glucose and starch by immobilized cells of Rhizopus oryzae in a rotating fibrous bed bioreactor.
    Tay A; Yang ST
    Biotechnol Bioeng; 2002 Oct; 80(1):1-12. PubMed ID: 12209781
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production of L-lactic acid by the yeast Candida sonorensis expressing heterologous bacterial and fungal lactate dehydrogenases.
    Ilmén M; Koivuranta K; Ruohonen L; Rajgarhia V; Suominen P; Penttilä M
    Microb Cell Fact; 2013 May; 12():53. PubMed ID: 23706009
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic engineering of Saccharomyces cerevisiae for efficient production of pure L-(+)-lactic acid.
    Ishida N; Saitoh S; Ohnishi T; Tokuhiro K; Nagamori E; Kitamoto K; Takahashi H
    Appl Biochem Biotechnol; 2006 Mar; 131(1-3):795-807. PubMed ID: 18563655
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic engineering of Saccharomyces cerevisiae for efficient production of pure L-(+)-lactic acid.
    Ishida N; Saitoh S; Ohnishi T; Tokuhiro K; Nagamori E; Kitamoto K; Takahashi H
    Appl Biochem Biotechnol; 2006; 129-132():795-807. PubMed ID: 16915689
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lactic acid production from xylose by the fungus Rhizopus oryzae.
    Maas RH; Bakker RR; Eggink G; Weusthuis RA
    Appl Microbiol Biotechnol; 2006 Oct; 72(5):861-8. PubMed ID: 16528511
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deletion of JEN1 and ADY2 reduces lactic acid yield from an engineered Saccharomyces cerevisiae, in xylose medium, expressing a heterologous lactate dehydrogenase.
    Turner TL; Lane S; Jayakody LN; Zhang GC; Kim H; Cho W; Jin YS
    FEMS Yeast Res; 2019 Sep; 19(6):. PubMed ID: 31505595
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient production of L-lactic acid by Crabtree-negative yeast Candida boidinii.
    Osawa F; Fujii T; Nishida T; Tada N; Ohnishi T; Kobayashi O; Komeda T; Yoshida S
    Yeast; 2009 Sep; 26(9):485-96. PubMed ID: 19655300
    [TBL] [Abstract][Full Text] [Related]  

  • 17. L-Lactic acid production from glucose and xylose with engineered strains of Saccharomyces cerevisiae: aeration and carbon source influence yields and productivities.
    Novy V; Brunner B; Nidetzky B
    Microb Cell Fact; 2018 Apr; 17(1):59. PubMed ID: 29642896
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toward "homolactic" fermentation of glucose and xylose by engineered Saccharomyces cerevisiae harboring a kinetically efficient l-lactate dehydrogenase within pdc1-pdc5 deletion background.
    Novy V; Brunner B; Müller G; Nidetzky B
    Biotechnol Bioeng; 2017 Jan; 114(1):163-171. PubMed ID: 27426989
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Co-production of lactic acid and chitin using a pelletized filamentous fungus Rhizopus oryzae cultured on cull potatoes and glucose.
    Liu Y; Liao W; Chen S
    J Appl Microbiol; 2008 Nov; 105(5):1521-8. PubMed ID: 19146489
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved oxygen transfer and increased L-lactic acid production by morphology control of Rhizopus oryzae in a static bed bioreactor.
    Chotisubha-anandha N; Thitiprasert S; Tolieng V; Thongchul N
    Bioprocess Biosyst Eng; 2011 Feb; 34(2):163-72. PubMed ID: 20703501
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.