These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
427 related articles for article (PubMed ID: 12545382)
1. Lactic acid production by Saccharomyces cerevisiae expressing a Rhizopus oryzae lactate dehydrogenase gene. Skory CD J Ind Microbiol Biotechnol; 2003 Jan; 30(1):22-7. PubMed ID: 12545382 [TBL] [Abstract][Full Text] [Related]
2. Lactic acid production by Rhizopus oryzae transformants with modified lactate dehydrogenase activity. Skory CD Appl Microbiol Biotechnol; 2004 Apr; 64(2):237-42. PubMed ID: 14624317 [TBL] [Abstract][Full Text] [Related]
3. [Screening of a low alcohol dehydrogenase activity mutant of rhizopus oryzae and the regulation of Zn2+ and Mg2+]. Pan LJ; Fu P; Zheng Z; Luo SZ; Jiang ST Wei Sheng Wu Xue Bao; 2006 Aug; 46(4):586-90. PubMed ID: 17037060 [TBL] [Abstract][Full Text] [Related]
4. Double mutation of the PDC1 and ADH1 genes improves lactate production in the yeast Saccharomyces cerevisiae expressing the bovine lactate dehydrogenase gene. Tokuhiro K; Ishida N; Nagamori E; Saitoh S; Onishi T; Kondo A; Takahashi H Appl Microbiol Biotechnol; 2009 Apr; 82(5):883-90. PubMed ID: 19122995 [TBL] [Abstract][Full Text] [Related]
5. In vivo regulation of alcohol dehydrogenase and lactate dehydrogenase in Rhizopus oryzae to improve L-lactic acid fermentation. Thitiprasert S; Sooksai S; Thongchul N Appl Biochem Biotechnol; 2011 Aug; 164(8):1305-22. PubMed ID: 21416338 [TBL] [Abstract][Full Text] [Related]
6. [Modification of carbon flux in Sacchromyces cerevisiae to improve L-lactic acid production]. Zhao L; Wang J; Zhou J; Liu L; Du G; Chen J Wei Sheng Wu Xue Bao; 2011 Jan; 51(1):50-8. PubMed ID: 21465789 [TBL] [Abstract][Full Text] [Related]
8. Genetic diversity in Rhizopus oryzae strains as revealed by the sequence of lactate dehydrogenase genes. Saito K; Saito A; Ohnishi M; Oda Y Arch Microbiol; 2004 Sep; 182(1):30-6. PubMed ID: 15278242 [TBL] [Abstract][Full Text] [Related]
9. [Metabolic engineering of wild acid-resistant yeast for L-lactic acid production]. Zhang Q; Zhang L; Ding Z; Wang Z; Shi G Sheng Wu Gong Cheng Xue Bao; 2011 Jul; 27(7):1024-31. PubMed ID: 22016986 [TBL] [Abstract][Full Text] [Related]
10. Production of L(+)-lactic acid from glucose and starch by immobilized cells of Rhizopus oryzae in a rotating fibrous bed bioreactor. Tay A; Yang ST Biotechnol Bioeng; 2002 Oct; 80(1):1-12. PubMed ID: 12209781 [TBL] [Abstract][Full Text] [Related]
11. Production of L-lactic acid by the yeast Candida sonorensis expressing heterologous bacterial and fungal lactate dehydrogenases. Ilmén M; Koivuranta K; Ruohonen L; Rajgarhia V; Suominen P; Penttilä M Microb Cell Fact; 2013 May; 12():53. PubMed ID: 23706009 [TBL] [Abstract][Full Text] [Related]
12. Metabolic engineering of Saccharomyces cerevisiae for efficient production of pure L-(+)-lactic acid. Ishida N; Saitoh S; Ohnishi T; Tokuhiro K; Nagamori E; Kitamoto K; Takahashi H Appl Biochem Biotechnol; 2006 Mar; 131(1-3):795-807. PubMed ID: 18563655 [TBL] [Abstract][Full Text] [Related]
13. Metabolic engineering of Saccharomyces cerevisiae for efficient production of pure L-(+)-lactic acid. Ishida N; Saitoh S; Ohnishi T; Tokuhiro K; Nagamori E; Kitamoto K; Takahashi H Appl Biochem Biotechnol; 2006; 129-132():795-807. PubMed ID: 16915689 [TBL] [Abstract][Full Text] [Related]
14. Lactic acid production from xylose by the fungus Rhizopus oryzae. Maas RH; Bakker RR; Eggink G; Weusthuis RA Appl Microbiol Biotechnol; 2006 Oct; 72(5):861-8. PubMed ID: 16528511 [TBL] [Abstract][Full Text] [Related]
15. Deletion of JEN1 and ADY2 reduces lactic acid yield from an engineered Saccharomyces cerevisiae, in xylose medium, expressing a heterologous lactate dehydrogenase. Turner TL; Lane S; Jayakody LN; Zhang GC; Kim H; Cho W; Jin YS FEMS Yeast Res; 2019 Sep; 19(6):. PubMed ID: 31505595 [TBL] [Abstract][Full Text] [Related]
16. Efficient production of L-lactic acid by Crabtree-negative yeast Candida boidinii. Osawa F; Fujii T; Nishida T; Tada N; Ohnishi T; Kobayashi O; Komeda T; Yoshida S Yeast; 2009 Sep; 26(9):485-96. PubMed ID: 19655300 [TBL] [Abstract][Full Text] [Related]
17. L-Lactic acid production from glucose and xylose with engineered strains of Saccharomyces cerevisiae: aeration and carbon source influence yields and productivities. Novy V; Brunner B; Nidetzky B Microb Cell Fact; 2018 Apr; 17(1):59. PubMed ID: 29642896 [TBL] [Abstract][Full Text] [Related]
18. Toward "homolactic" fermentation of glucose and xylose by engineered Saccharomyces cerevisiae harboring a kinetically efficient l-lactate dehydrogenase within pdc1-pdc5 deletion background. Novy V; Brunner B; Müller G; Nidetzky B Biotechnol Bioeng; 2017 Jan; 114(1):163-171. PubMed ID: 27426989 [TBL] [Abstract][Full Text] [Related]
19. Co-production of lactic acid and chitin using a pelletized filamentous fungus Rhizopus oryzae cultured on cull potatoes and glucose. Liu Y; Liao W; Chen S J Appl Microbiol; 2008 Nov; 105(5):1521-8. PubMed ID: 19146489 [TBL] [Abstract][Full Text] [Related]
20. Improved oxygen transfer and increased L-lactic acid production by morphology control of Rhizopus oryzae in a static bed bioreactor. Chotisubha-anandha N; Thitiprasert S; Tolieng V; Thongchul N Bioprocess Biosyst Eng; 2011 Feb; 34(2):163-72. PubMed ID: 20703501 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]