BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

430 related articles for article (PubMed ID: 12545382)

  • 21. Lactate and ethanol productions by Rhizopus oryzae ATCC 9363 and activities of related pyruvate branch point enzymes.
    Büyükkileci AO; Hamamci H; Yucel M
    J Biosci Bioeng; 2006 Nov; 102(5):464-6. PubMed ID: 17189176
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Direct fermentation of potato starch wastewater to lactic acid by Rhizopus oryzae and Rhizopus arrhizus.
    Huang LP; Jin B; Lant P
    Bioprocess Biosyst Eng; 2005 Jul; 27(4):229-38. PubMed ID: 15947951
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Lactic fermentation of cellobiose by a yeast strain displaying beta-glucosidase on the cell surface.
    Tokuhiro K; Ishida N; Kondo A; Takahashi H
    Appl Microbiol Biotechnol; 2008 Jun; 79(3):481-8. PubMed ID: 18443785
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Efficient production of L-Lactic acid by metabolically engineered Saccharomyces cerevisiae with a genome-integrated L-lactate dehydrogenase gene.
    Ishida N; Saitoh S; Tokuhiro K; Nagamori E; Matsuyama T; Kitamoto K; Takahashi H
    Appl Environ Microbiol; 2005 Apr; 71(4):1964-70. PubMed ID: 15812027
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Investigating the effectiveness of DNA microarray analysis for identifying the genes involved in l-lactate production by Saccharomyces cerevisiae.
    Hirasawa T; Ookubo A; Yoshikawa K; Nagahisa K; Furusawa C; Sawai H; Shimizu H
    Appl Microbiol Biotechnol; 2009 Oct; 84(6):1149-59. PubMed ID: 19727705
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Lactic acid production from xylose by engineered Saccharomyces cerevisiae without PDC or ADH deletion.
    Turner TL; Zhang GC; Kim SR; Subramaniam V; Steffen D; Skory CD; Jang JY; Yu BJ; Jin YS
    Appl Microbiol Biotechnol; 2015 Oct; 99(19):8023-33. PubMed ID: 26043971
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Development of metabolically engineered Saccharomyces cerevisiae cells for the production of lactic acid.
    Porro D; Brambilla L; Ranzi BM; Martegani E; Alberghina L
    Biotechnol Prog; 1995; 11(3):294-8. PubMed ID: 7619399
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Effect of ZnSO4 on L-lactic acid production by Rhizopus oryzae].
    Ge C; Pan R; Zhang J; Cai J; Yu Z
    Wei Sheng Wu Xue Bao; 2013 May; 53(5):515-20. PubMed ID: 23957157
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Repeated intermittent L-lactic acid fermentation technology by self-immobilized Rhizopus oryzae].
    Jiang S; Zheng Z; Zhu Y; Wu X; Pan L; Luo S; Du W
    Sheng Wu Gong Cheng Xue Bao; 2008 Oct; 24(10):1729-33. PubMed ID: 19149184
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Native and modified lactate dehydrogenase expression in a fumaric acid producing isolate Rhizopus oryzae 99-880.
    Skory CD; Ibrahim AS
    Curr Genet; 2007 Jul; 52(1):23-33. PubMed ID: 17551728
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optimization of L-(+)-lactic acid production using pelletized filamentous Rhizopus oryzae NRRL 395.
    Liu Y; Liao W; Liu C; Chen S
    Appl Biochem Biotechnol; 2006 Mar; 131(1-3):844-53. PubMed ID: 18563658
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optimization of L-(+)-lactic acid production using pelletized filamentous Rhizopus oryzae NRRL 395.
    Liu Y; Liao W; Liu C; Chen S
    Appl Biochem Biotechnol; 2006; 129-132():844-53. PubMed ID: 16915692
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bioconversion of waste office paper to L(+)-lactic acid by the filamentous fungus Rhizopus oryzae.
    Park EY; Anh PN; Okuda N
    Bioresour Technol; 2004 May; 93(1):77-83. PubMed ID: 14987724
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Lactic acid fermentation of potato pulp by the fungus Rhizopus oryzae.
    Oda Y; Saito K; Yamauchi H; Mori M
    Curr Microbiol; 2002 Jul; 45(1):1-4. PubMed ID: 12029519
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Expression of the Aspergillus niger glucose oxidase gene in Saccharomyces cerevisiae and its potential applications in wine production.
    Malherbe DF; du Toit M; Cordero Otero RR; van Rensburg P; Pretorius IS
    Appl Microbiol Biotechnol; 2003 Jun; 61(5-6):502-11. PubMed ID: 12764565
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modulation of glycerol and ethanol yields during alcoholic fermentation in Saccharomyces cerevisiae strains overexpressed or disrupted for GPD1 encoding glycerol 3-phosphate dehydrogenase.
    Michnick S; Roustan JL; Remize F; Barre P; Dequin S
    Yeast; 1997 Jul; 13(9):783-93. PubMed ID: 9234667
    [TBL] [Abstract][Full Text] [Related]  

  • 37. L-lactic acid production by Aspergillus brasiliensis overexpressing the heterologous ldha gene from Rhizopus oryzae.
    Liaud N; Rosso MN; Fabre N; Crapart S; Herpoël-Gimbert I; Sigoillot JC; Raouche S; Levasseur A
    Microb Cell Fact; 2015 May; 14():66. PubMed ID: 25935554
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Isolation and expression of lactate dehydrogenase genes from Rhizopus oryzae.
    Skory CD
    Appl Environ Microbiol; 2000 Jun; 66(6):2343-8. PubMed ID: 10831409
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optimization of lactic acid production by pellet-form Rhizopus oryzae in 3-L airlift bioreactor using response surface methodology.
    Maneeboon T; Vanichsriratana W; Pomchaitaward C; Kitpreechavanich V
    Appl Biochem Biotechnol; 2010 May; 161(1-8):137-46. PubMed ID: 20091139
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A modified Cre-lox genetic switch to dynamically control metabolic flow in Saccharomyces cerevisiae.
    Yamanishi M; Matsuyama T
    ACS Synth Biol; 2012 May; 1(5):172-80. PubMed ID: 23651155
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.