These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 1254618)

  • 1. An evaluation of bone growth into porous high density polyethylene.
    Klawitter JJ; Bagwell JG; Weinstein AM; Sauer BW
    J Biomed Mater Res; 1976 Mar; 10(2):311-23. PubMed ID: 1254618
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bone growth into porous high-density polyethylene.
    Spector M; Flemming WR; Kreutner A
    J Biomed Mater Res; 1976 Jul; 10(4):595-603. PubMed ID: 947921
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fracture of porous polyethylene-bone composite.
    Mayer RD; Moyle DD; Sauer BW
    J Biomed Mater Res; 1983 Jan; 17(1):59-70. PubMed ID: 6826578
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characteristics of tissue growth into Proplast and porous polyethylene implants in bone.
    Spector M; Harmon SL; Kreutner A
    J Biomed Mater Res; 1979 Sep; 13(5):677-92. PubMed ID: 479215
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preliminary observations of bone ingrowth into porous materials.
    Robertson DM; Pierre L; Chahal R
    J Biomed Mater Res; 1976 May; 10(3):335-44. PubMed ID: 1270453
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of bone ingrowth into porous biomaterials using MICRO-CT.
    Jones AC; Arns CH; Sheppard AP; Hutmacher DW; Milthorpe BK; Knackstedt MA
    Biomaterials; 2007 May; 28(15):2491-504. PubMed ID: 17335896
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comments on "characteristics of tissue growth into proplast and porous polyethylene implants in bone".
    Homsy CA
    J Biomed Mater Res; 1979 Nov; 13(6):987-92. PubMed ID: 511865
    [No Abstract]   [Full Text] [Related]  

  • 8. Early tissue infiltrate in porous polyethylene implants into bone: a scanning electron microscope study.
    Spector M; Flemming WR; Sauer BW
    J Biomed Mater Res; 1975 Sep; 9(5):537-42. PubMed ID: 1176523
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The susceptibility of smooth implant surfaces to periimplant fibrosis and migration of polyethylene wear debris.
    Bobyn JD; Jacobs JJ; Tanzer M; Urban RM; Aribindi R; Sumner DR; Turner TM; Brooks CE
    Clin Orthop Relat Res; 1995 Feb; (311):21-39. PubMed ID: 7634577
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interface mechanics of porous titanium implants.
    Clemow AJ; Weinstein AM; Klawitter JJ; Koeneman J; Anderson J
    J Biomed Mater Res; 1981 Jan; 15(1):73-82. PubMed ID: 7348706
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tensile strength of bone (bone/porous polyethylene) interface.
    Skinner HB; Shackelford JF; Lin HJ; Cutler AD
    Biomater Med Devices Artif Organs; 1979; 7(1):113-9. PubMed ID: 454776
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Porous hydroxyapatite and tricalcium phosphate cylinders with two different pore size ranges implanted in the cancellous bone of rabbits. A comparative histomorphometric and histologic study of bony ingrowth and implant substitution.
    Eggli PS; Müller W; Schenk RK
    Clin Orthop Relat Res; 1988 Jul; (232):127-38. PubMed ID: 2838207
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fibrovascularization and osteogenesis in high-density porous polyethylene implants.
    Oliveira RV; de Souza Nunes LS; Filho HN; de Andrade Holgado L; Ribeiro DA; Matsumoto MA
    J Craniofac Surg; 2009 Jul; 20(4):1120-4. PubMed ID: 19553849
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bone ingrowth in porous titanium implants produced by 3D fiber deposition.
    Li JP; Habibovic P; van den Doel M; Wilson CE; de Wijn JR; van Blitterswijk CA; de Groot K
    Biomaterials; 2007 Jun; 28(18):2810-20. PubMed ID: 17367852
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pore throat size and connectivity determine bone and tissue ingrowth into porous implants: three-dimensional micro-CT based structural analyses of porous bioactive titanium implants.
    Otsuki B; Takemoto M; Fujibayashi S; Neo M; Kokubo T; Nakamura T
    Biomaterials; 2006 Dec; 27(35):5892-900. PubMed ID: 16945409
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bone ingrowth into two porous ceramics with different pore sizes: an experimental study.
    Galois L; Mainard D
    Acta Orthop Belg; 2004 Dec; 70(6):598-603. PubMed ID: 15669463
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tissue ingrowth of Replamineform implants.
    Chiroff RT; White EW; Weber KN; Roy DM
    J Biomed Mater Res; 1975 Jul; 9(4):29-45. PubMed ID: 1176509
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of hydroxyapatite impregnation on skeletal bonding of porous coated implants.
    Ducheyne P; Hench LL; Kagan A; Martens M; Bursens A; Mulier JC
    J Biomed Mater Res; 1980 May; 14(3):225-37. PubMed ID: 7364787
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Implantation of porous polymethylmethacrylate resin for tooth and bone replacement.
    Ashman A; Moss ML
    J Prosthet Dent; 1977 Jun; 37(6):657-65. PubMed ID: 266586
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The optimum pore size for the fixation of porous-surfaced metal implants by the ingrowth of bone.
    Bobyn JD; Pilliar RM; Cameron HU; Weatherly GC
    Clin Orthop Relat Res; 1980; (150):263-70. PubMed ID: 7428231
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.