These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 1254640)

  • 101. Vezatin is required for the maturation of the neuromuscular synapse.
    Koppel N; Friese MB; Cardasis HL; Neubert TA; Burden SJ
    Mol Biol Cell; 2019 Sep; 30(20):2571-2583. PubMed ID: 31411944
    [TBL] [Abstract][Full Text] [Related]  

  • 102. Salbutamol modifies the neuromuscular junction in a mouse model of ColQ myasthenic syndrome.
    McMacken GM; Spendiff S; Whittaker RG; O'Connor E; Howarth RM; Boczonadi V; Horvath R; Slater CR; Lochmüller H
    Hum Mol Genet; 2019 Jul; 28(14):2339-2351. PubMed ID: 31220253
    [TBL] [Abstract][Full Text] [Related]  

  • 103. MACF1 links Rapsyn to microtubule- and actin-binding proteins to maintain neuromuscular synapses.
    Oury J; Liu Y; Töpf A; Todorovic S; Hoedt E; Preethish-Kumar V; Neubert TA; Lin W; Lochmüller H; Burden SJ
    J Cell Biol; 2019 May; 218(5):1686-1705. PubMed ID: 30842214
    [TBL] [Abstract][Full Text] [Related]  

  • 104. Fine Localization of Acetylcholinesterase in the Synaptic Cleft of the Vertebrate Neuromuscular Junction.
    Blotnick-Rubin E; Anglister L
    Front Mol Neurosci; 2018; 11():123. PubMed ID: 29725289
    [TBL] [Abstract][Full Text] [Related]  

  • 105. Evidence for the subsynaptic zone as a preferential site for CHRN recycling at neuromuscular junctions.
    Wild F; Khan MM; Rudolf R
    Small GTPases; 2019 Sep; 10(5):395-402. PubMed ID: 28489965
    [TBL] [Abstract][Full Text] [Related]  

  • 106. Enzymatic Activity of the Scaffold Protein Rapsyn for Synapse Formation.
    Li L; Cao Y; Wu H; Ye X; Zhu Z; Xing G; Shen C; Barik A; Zhang B; Xie X; Zhi W; Gan L; Su H; Xiong WC; Mei L
    Neuron; 2016 Dec; 92(5):1007-1019. PubMed ID: 27839998
    [TBL] [Abstract][Full Text] [Related]  

  • 107. The role of laminins in the organization and function of neuromuscular junctions.
    Rogers RS; Nishimune H
    Matrix Biol; 2017 Jan; 57-58():86-105. PubMed ID: 27614294
    [TBL] [Abstract][Full Text] [Related]  

  • 108. LRP4 is critical for neuromuscular junction maintenance.
    Barik A; Lu Y; Sathyamurthy A; Bowman A; Shen C; Li L; Xiong WC; Mei L
    J Neurosci; 2014 Oct; 34(42):13892-905. PubMed ID: 25319686
    [TBL] [Abstract][Full Text] [Related]  

  • 109. The purinergic neurotransmitter revisited: a single substance or multiple players?
    Mutafova-Yambolieva VN; Durnin L
    Pharmacol Ther; 2014 Nov; 144(2):162-91. PubMed ID: 24887688
    [TBL] [Abstract][Full Text] [Related]  

  • 110. Crosslinking-induced endocytosis of acetylcholine receptors by quantum dots.
    Lee CW; Zhang H; Geng L; Peng HB
    PLoS One; 2014; 9(2):e90187. PubMed ID: 24587270
    [TBL] [Abstract][Full Text] [Related]  

  • 111. Sequence of age-associated changes to the mouse neuromuscular junction and the protective effects of voluntary exercise.
    Cheng A; Morsch M; Murata Y; Ghazanfari N; Reddel SW; Phillips WD
    PLoS One; 2013; 8(7):e67970. PubMed ID: 23844140
    [TBL] [Abstract][Full Text] [Related]  

  • 112. Structural mechanisms of the agrin-LRP4-MuSK signaling pathway in neuromuscular junction differentiation.
    Zong Y; Jin R
    Cell Mol Life Sci; 2013 Sep; 70(17):3077-88. PubMed ID: 23178848
    [TBL] [Abstract][Full Text] [Related]  

  • 113. Reciprocal regulation of axonal Filopodia and outgrowth during neuromuscular junction development.
    Li PP; Zhou JJ; Meng M; Madhavan R; Peng HB
    PLoS One; 2012; 7(9):e44759. PubMed ID: 22957106
    [TBL] [Abstract][Full Text] [Related]  

  • 114. End-plate acetylcholine receptor: structure, mechanism, pharmacology, and disease.
    Sine SM
    Physiol Rev; 2012 Jul; 92(3):1189-234. PubMed ID: 22811427
    [TBL] [Abstract][Full Text] [Related]  

  • 115. The function of p120 catenin in filopodial growth and synaptic vesicle clustering in neurons.
    Chen C; Li PP; Madhavan R; Peng HB
    Mol Biol Cell; 2012 Jul; 23(14):2680-91. PubMed ID: 22648172
    [TBL] [Abstract][Full Text] [Related]  

  • 116. Mechanism of acetylcholine receptor cluster formation induced by DC electric field.
    Zhang HL; Peng HB
    PLoS One; 2011; 6(10):e26805. PubMed ID: 22046365
    [TBL] [Abstract][Full Text] [Related]  

  • 117. Axonal filopodial asymmetry induced by synaptic target.
    Li PP; Chen C; Lee CW; Madhavan R; Peng HB
    Mol Biol Cell; 2011 Jul; 22(14):2480-90. PubMed ID: 21613540
    [TBL] [Abstract][Full Text] [Related]  

  • 118. Calcium/calmodulin kinase II-dependent acetylcholine receptor cycling at the mammalian neuromuscular junction in vivo.
    Martinez-Pena y Valenzuela I; Mouslim C; Akaaboune M
    J Neurosci; 2010 Sep; 30(37):12455-65. PubMed ID: 20844140
    [TBL] [Abstract][Full Text] [Related]  

  • 119. The function of cortactin in the clustering of acetylcholine receptors at the vertebrate neuromuscular junction.
    Madhavan R; Gong ZL; Ma JJ; Chan AW; Peng HB
    PLoS One; 2009 Dec; 4(12):e8478. PubMed ID: 20041195
    [TBL] [Abstract][Full Text] [Related]  

  • 120. The formation of acetylcholine receptor clusters visualized with quantum dots.
    Geng L; Zhang HL; Peng HB
    BMC Neurosci; 2009 Jul; 10():80. PubMed ID: 19604411
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.