These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 1254640)

  • 121. The function of Shp2 tyrosine phosphatase in the dispersal of acetylcholine receptor clusters.
    Qian YK; Chan AW; Madhavan R; Peng HB
    BMC Neurosci; 2008 Jul; 9():70. PubMed ID: 18647419
    [TBL] [Abstract][Full Text] [Related]  

  • 122. Glutamate receptor dynamics in dendritic microdomains.
    Newpher TM; Ehlers MD
    Neuron; 2008 May; 58(4):472-97. PubMed ID: 18498731
    [TBL] [Abstract][Full Text] [Related]  

  • 123. In vivo imaging of presynaptic terminals and postsynaptic sites in the mouse submandibular ganglion.
    McCann CM; Lichtman JW
    Dev Neurobiol; 2008 May; 68(6):760-70. PubMed ID: 18383540
    [TBL] [Abstract][Full Text] [Related]  

  • 124. Prolongation of evoked and spontaneous synaptic currents at the neuromuscular junction after activity blockade is caused by the upregulation of fetal acetylcholine receptors.
    Wang X; Engisch KL; Teichert RW; Olivera BM; Pinter MJ; Rich MM
    J Neurosci; 2006 Aug; 26(35):8983-7. PubMed ID: 16943554
    [TBL] [Abstract][Full Text] [Related]  

  • 125. The cholinergic antagonist alpha-bungarotoxin also binds and blocks a subset of GABA receptors.
    McCann CM; Bracamontes J; Steinbach JH; Sanes JR
    Proc Natl Acad Sci U S A; 2006 Mar; 103(13):5149-54. PubMed ID: 16549768
    [TBL] [Abstract][Full Text] [Related]  

  • 126. New approaches to the study of sphingolipid enriched membrane domains: the use of electron microscopic autoradiography to reveal metabolically tritium labeled sphingolipids in cell cultures.
    Dolo V; D'Ascenzo S; Sorice M; Pavan A; Sciannamblo M; Prinetti A; Chigorno V; Tettamanti G; Sonnino S
    Glycoconj J; 2000; 17(3 -4):261-8. PubMed ID: 11201799
    [TBL] [Abstract][Full Text] [Related]  

  • 127. Target-specific expression of pre- and postsynaptic mechanisms.
    Tóth K; McBain CJ
    J Physiol; 2000 May; 525 Pt 1(Pt 1):41-51. PubMed ID: 10811723
    [TBL] [Abstract][Full Text] [Related]  

  • 128. Constitutively active MuSK is clustered in the absence of agrin and induces ectopic postsynaptic-like membranes in skeletal muscle fibers.
    Jones G; Moore C; Hashemolhosseini S; Brenner HR
    J Neurosci; 1999 May; 19(9):3376-83. PubMed ID: 10212297
    [TBL] [Abstract][Full Text] [Related]  

  • 129. Neuronal acetylcholine receptors with alpha7 subunits are concentrated on somatic spines for synaptic signaling in embryonic chick ciliary ganglia.
    Shoop RD; Martone ME; Yamada N; Ellisman MH; Berg DK
    J Neurosci; 1999 Jan; 19(2):692-704. PubMed ID: 9880590
    [TBL] [Abstract][Full Text] [Related]  

  • 130. A functional role for specific spliced variants of the alpha7beta1 integrin in acetylcholine receptor clustering.
    Burkin DJ; Gu M; Hodges BL; Campanelli JT; Kaufman SJ
    J Cell Biol; 1998 Nov; 143(4):1067-75. PubMed ID: 9817762
    [TBL] [Abstract][Full Text] [Related]  

  • 131. Analysis of synaptic transmission in the neuromuscular junction using a continuum finite element model.
    Smart JL; McCammon JA
    Biophys J; 1998 Oct; 75(4):1679-88. PubMed ID: 9746510
    [TBL] [Abstract][Full Text] [Related]  

  • 132. Intracellular calcium regulates agrin-induced acetylcholine receptor clustering.
    Megeath LJ; Fallon JR
    J Neurosci; 1998 Jan; 18(2):672-8. PubMed ID: 9425009
    [TBL] [Abstract][Full Text] [Related]  

  • 133. Distribution and function of laminins in the neuromuscular system of developing, adult, and mutant mice.
    Patton BL; Miner JH; Chiu AY; Sanes JR
    J Cell Biol; 1997 Dec; 139(6):1507-21. PubMed ID: 9396756
    [TBL] [Abstract][Full Text] [Related]  

  • 134. Laminin-induced acetylcholine receptor clustering: an alternative pathway.
    Sugiyama JE; Glass DJ; Yancopoulos GD; Hall ZW
    J Cell Biol; 1997 Oct; 139(1):181-91. PubMed ID: 9314538
    [TBL] [Abstract][Full Text] [Related]  

  • 135. Common molecular mechanisms in field- and agrin-induced acetylcholine receptor clustering.
    Sabrina F; Stollberg J
    Cell Mol Neurobiol; 1997 Apr; 17(2):207-25. PubMed ID: 9140698
    [TBL] [Abstract][Full Text] [Related]  

  • 136. Subtle neuromuscular defects in utrophin-deficient mice.
    Grady RM; Merlie JP; Sanes JR
    J Cell Biol; 1997 Feb; 136(4):871-82. PubMed ID: 9049252
    [TBL] [Abstract][Full Text] [Related]  

  • 137. Alternative splicing of agrin regulates its binding to heparin alpha-dystroglycan, and the cell surface.
    O'Toole JJ; Deyst KA; Bowe MA; Nastuk MA; McKechnie BA; Fallon JR
    Proc Natl Acad Sci U S A; 1996 Jul; 93(14):7369-74. PubMed ID: 8693000
    [TBL] [Abstract][Full Text] [Related]  

  • 138. Space and time characteristics of transmitter release at the nerve-electroplaque junction of Torpedo.
    Girod R; Corrèges P; Jacquet J; Dunant Y
    J Physiol; 1993 Nov; 471():129-57. PubMed ID: 8120801
    [TBL] [Abstract][Full Text] [Related]  

  • 139. Selective clustering of glutamate and gamma-aminobutyric acid receptors opposite terminals releasing the corresponding neurotransmitters.
    Craig AM; Blackstone CD; Huganir RL; Banker G
    Proc Natl Acad Sci U S A; 1994 Dec; 91(26):12373-7. PubMed ID: 7809044
    [TBL] [Abstract][Full Text] [Related]  

  • 140. Atomic force microscopy of cloned nicotinic acetylcholine receptor expressed in Xenopus oocytes.
    Lal R; Yu L
    Proc Natl Acad Sci U S A; 1993 Aug; 90(15):7280-4. PubMed ID: 7688475
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.