These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 1254653)

  • 1. Effect of exogenous ATP on sodium transport in mammalian red cells.
    Romualdez A; Volpi M; Sha'afi RI
    J Cell Physiol; 1976 Mar; 87(3):297-305. PubMed ID: 1254653
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sodium and calcium transport in cat red cells.
    Sha'afi RI; Naccache P
    J Cell Physiol; 1975 Jun; 85(3):655-64. PubMed ID: 1141387
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human and dog erythrocytes: relationship between cellular ATP levels, ATP consumption and potassium concentrations.
    Miseta A; Somoskeoy S; Galambos C; Kellermayer M; Wheatley DN; Cameron IL
    Physiol Chem Phys Med NMR; 1992; 24(1):11-20. PubMed ID: 1317586
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cation distribution in mammalian red blood cells: interspecies and intraspecies relationships between cellular ATP, potassium, sodium and magnesium concentrations.
    Wheatley DN; Miseta A; Kellermayer M; Galambos C; Bogner P; Berènyi E; Cameron IL
    Physiol Chem Phys Med NMR; 1994; 26(1):111-8. PubMed ID: 7938220
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intracellular signalling by nucleotide receptors in PC12 pheochromocytoma cells.
    Raha S; de Souza LR; Reed JK
    J Cell Physiol; 1993 Mar; 154(3):623-30. PubMed ID: 8436608
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exogenous adenine nucleotides replete endothelial cell adenosine triphosphate after oxidant injury by adenosine uptake.
    Andreoli SP; Liechty EA; Mallett C
    J Lab Clin Med; 1990 Mar; 115(3):304-13. PubMed ID: 2313162
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel type of ATP block on a Ca(2+)-activated K(+) channel from bullfrog erythrocytes.
    Shindo M; Imai Y; Sohma Y
    Biophys J; 2000 Jul; 79(1):287-97. PubMed ID: 10866955
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of exogenous ATP on the volume of TA3 ascites tumor cells.
    Stewart CC; Gasic G; Hempling HG
    J Cell Physiol; 1969 Apr; 73(2):125-31. PubMed ID: 4978097
    [No Abstract]   [Full Text] [Related]  

  • 9. Regulatory effects of adenosine and adenine nucleotides on oxygen radical responses of neutrophils.
    Ward PA; Cunningham TW; McCulloch KK; Johnson KJ
    Lab Invest; 1988 Apr; 58(4):438-47. PubMed ID: 2833659
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of properties of the Ca2+ influx and of the Ca2+-activated K+ efflux (Gárdos effect) in vanadate-treated and ATP-depleted human red blood cells.
    Kaiserová K; Lakatos B; Peterajová E; Orlický J; Varecka L
    Gen Physiol Biophys; 2002 Dec; 21(4):429-42. PubMed ID: 12693714
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of ouabain on the breakdown of adenine nucleotides in glucose-depleted nucleated red blood cells. Characterization of ATPase.
    Kaloyianni M; Tsikriktsi O; Tsianopoulou P
    Gen Physiol Biophys; 1998 Jun; 17(2):143-56. PubMed ID: 9785102
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of ATP depletion on kinetics of Na/Ca exchange-mediated Ca influx in Na-loaded heart cells.
    Haworth RA; Biggs AV
    J Mol Cell Cardiol; 1997 Feb; 29(2):503-14. PubMed ID: 9140810
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two distinct ATP signaling mechanisms in differentiated neuroblastoma x glioma hybrid NG108-15 cells.
    Chueh SH; Hsu LS; Song SL
    Mol Pharmacol; 1994 Mar; 45(3):532-9. PubMed ID: 7511780
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An uncoupled efflux of sodium ions from human red cells, probably associated with Na-dependent ATPase activity.
    Karlish SJ; Glynn IM
    Ann N Y Acad Sci; 1974; 242(0):461-70. PubMed ID: 4279599
    [No Abstract]   [Full Text] [Related]  

  • 15. Sodium- and adenosine-triphosphate-dependent calcium movements in membrane vesicles prepared from dog erythrocytes.
    Ortiz OE; Sjodin RA
    J Physiol; 1984 Sep; 354():287-301. PubMed ID: 6090650
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ATP requirement of the sodium-dependent magnesium extrusion from human red blood cells.
    Frenkel EJ; Graziani M; Schatzmann HJ
    J Physiol; 1989 Jul; 414():385-97. PubMed ID: 2607436
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for a magnesium- and ATP-dependent calcium extrusion pump in dog erythrocytes.
    Brown AM
    Biochim Biophys Acta; 1979 Jun; 554(1):195-203. PubMed ID: 378257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preliminary characterization of the acetylcholine receptor in human erythrocytes.
    Huestis WH
    J Supramol Struct; 1976; 4(3):355-65. PubMed ID: 4659
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the substrate specificity of the red cell calcium pump.
    Enyedi A; Sarkadi B; Gárdos G
    Biochim Biophys Acta; 1982 Apr; 687(1):109-12. PubMed ID: 6978736
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Active and passive Ca movements in dog red blood cells and resealed ghosts.
    Parker JC
    Am J Physiol; 1979 Jul; 237(1):C10-6. PubMed ID: 464036
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.