These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

54 related articles for article (PubMed ID: 12546546)

  • 21. Probabilistic alignment detects remote homology in a pair of protein sequences without homologous sequence information.
    Koike R; Kinoshita K; Kidera A
    Proteins; 2007 Feb; 66(3):655-63. PubMed ID: 17152080
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Protein structure alignment considering phenotypic plasticity.
    Csaba G; Birzele F; Zimmer R
    Bioinformatics; 2008 Aug; 24(16):i98-104. PubMed ID: 18689847
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Protein design with L- and D-alpha-amino acid structures as the alphabet.
    Durani S
    Acc Chem Res; 2008 Oct; 41(10):1301-8. PubMed ID: 18642934
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hydropathy analysis to correlate structure and function of proteins.
    Damodharan L; Pattabhi V
    Biochem Biophys Res Commun; 2004 Oct; 323(3):996-1002. PubMed ID: 15381098
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enzyme-like proteins from an unselected library of designed amino acid sequences.
    Wei Y; Hecht MH
    Protein Eng Des Sel; 2004 Jan; 17(1):67-75. PubMed ID: 14985539
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Direct correlation between proteins' folding rates and their amino acid compositions: an ab initio folding rate prediction.
    Ma BG; Guo JX; Zhang HY
    Proteins; 2006 Nov; 65(2):362-72. PubMed ID: 16937389
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Proteins of the same fold and unrelated sequences have similar amino acid composition.
    Ofran Y; Margalit H
    Proteins; 2006 Jul; 64(1):275-9. PubMed ID: 16565950
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identification of common structural features of binding sites in galactose-specific proteins.
    Sujatha MS; Balaji PV
    Proteins; 2004 Apr; 55(1):44-65. PubMed ID: 14997539
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Predicted role for the archease protein family based on structural and sequence analysis of TM1083 and MTH1598, two proteins structurally characterized through structural genomics efforts.
    Canaves JM
    Proteins; 2004 Jul; 56(1):19-27. PubMed ID: 15162483
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A comprehensive and non-redundant database of protein domain movements.
    Qi G; Lee R; Hayward S
    Bioinformatics; 2005 Jun; 21(12):2832-8. PubMed ID: 15802286
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparison of proteins based on segments structural similarity.
    Plewczynski D; Pas J; Von Grotthuss M; Rychlewski L
    Acta Biochim Pol; 2004; 51(1):161-72. PubMed ID: 15094837
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structural alignment of protein--DNA interfaces: insights into the determinants of binding specificity.
    Siggers TW; Silkov A; Honig B
    J Mol Biol; 2005 Feb; 345(5):1027-45. PubMed ID: 15644202
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Prediction of unfolded segments in a protein sequence based on amino acid composition.
    Coeytaux K; Poupon A
    Bioinformatics; 2005 May; 21(9):1891-900. PubMed ID: 15657106
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Simplicial edge representation of protein structures and alpha contact potential with confidence measure.
    Li X; Hu C; Liang J
    Proteins; 2003 Dec; 53(4):792-805. PubMed ID: 14635122
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Steiner minimal trees, twist angles, and the protein folding problem.
    Smith JM; Jang Y; Kim MK
    Proteins; 2007 Mar; 66(4):889-902. PubMed ID: 17173288
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Refinement of protein cores and protein-peptide interfaces using a potential scaling approach.
    Riemann RN; Zacharias M
    Protein Eng Des Sel; 2005 Oct; 18(10):465-76. PubMed ID: 16155119
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Similarity calculations using two-dimensional molecular representations.
    Allen BC; Grant GH; Richards WG
    J Chem Inf Comput Sci; 2001; 41(2):330-7. PubMed ID: 11277719
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hyperconjugation contributes to the bimodal distribution of glycine conformations observed in protein three-dimensional structures.
    Wathen B; Pratt DA; Jia Z
    Chembiochem; 2011 Jul; 12(11):1674-7. PubMed ID: 21671332
    [No Abstract]   [Full Text] [Related]  

  • 39. Models for teaching protein and nucleic acid structures.
    Smith I
    Lab Pract; 1972 Jul; 21(7):483-8. PubMed ID: 5040876
    [No Abstract]   [Full Text] [Related]  

  • 40. Cn3D: a new generation of three-dimensional molecular structure viewer.
    Hogue CW
    Trends Biochem Sci; 1997 Aug; 22(8):314-6. PubMed ID: 9270306
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.