BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 12546802)

  • 1. Insulin receptor-like proteins in Tetrahymena thermophila ciliary membranes.
    Christensen ST; Guerra CF; Awan A; Wheatley DN; Satir P
    Curr Biol; 2003 Jan; 13(2):R50-2. PubMed ID: 12546802
    [No Abstract]   [Full Text] [Related]  

  • 2. Kin5 knockdown in Tetrahymena thermophila using RNAi blocks cargo transport of Gef1.
    Awan A; Bell AJ; Satir P
    PLoS One; 2009; 4(3):e4873. PubMed ID: 19290045
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Establishment of a mutation system in Tetrahymena outer arm dynein and P-loop functions of the alpha heavy chain (Dyh3p).
    Edamatsu M
    Biochem Biophys Res Commun; 2017 Jan; 483(1):24-31. PubMed ID: 28069381
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GEF1 is a ciliary Sec7 GEF of Tetrahymena thermophila.
    Bell AJ; Guerra C; Phung V; Nair S; Seetharam R; Satir P
    Cell Motil Cytoskeleton; 2009 Aug; 66(8):483-99. PubMed ID: 19267341
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New class of cargo protein in Tetrahymena thermophila dense core secretory granules.
    Haddad A; Bowman GR; Turkewitz AP
    Eukaryot Cell; 2002 Aug; 1(4):583-93. PubMed ID: 12456006
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tetrahymena Expresses More than a Hundred Proteins with Lipid-binding MORN Motifs that can Differ in their Subcellular Localisations.
    Habicht J; Woehle C; Gould SB
    J Eukaryot Microbiol; 2015; 62(5):694-700. PubMed ID: 25847055
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hypoxia regulates assembly of cilia in suppressors of Tetrahymena lacking an intraflagellar transport subunit gene.
    Brown JM; Fine NA; Pandiyan G; Thazhath R; Gaertig J
    Mol Biol Cell; 2003 Aug; 14(8):3192-207. PubMed ID: 12925756
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nucleus-specific importin alpha proteins and nucleoporins regulate protein import and nuclear division in the binucleate Tetrahymena thermophila.
    Malone CD; Falkowska KA; Li AY; Galanti SE; Kanuru RC; LaMont EG; Mazzarella KC; Micev AJ; Osman MM; Piotrowski NK; Suszko JW; Timm AC; Xu MM; Liu L; Chalker DL
    Eukaryot Cell; 2008 Sep; 7(9):1487-99. PubMed ID: 18676955
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Function comparison and evolution analysis of metallothionein gene MTT2 and MTT4 in Tetrahymena thermophila].
    Chang Y; Feng LF; Xiong J; Miao W
    Dongwuxue Yanjiu; 2011 Oct; 32(5):476-84. PubMed ID: 22006798
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multifunctional acyltransferases from Tetrahymena thermophila.
    Biester EM; Hellenbrand J; Frentzen M
    Lipids; 2012 Apr; 47(4):371-81. PubMed ID: 22160552
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DisAp-dependent striated fiber elongation is required to organize ciliary arrays.
    Galati DF; Bonney S; Kronenberg Z; Clarissa C; Yandell M; Elde NC; Jerka-Dziadosz M; Giddings TH; Frankel J; Pearson CG
    J Cell Biol; 2014 Dec; 207(6):705-15. PubMed ID: 25533842
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Basal body stability and ciliogenesis requires the conserved component Poc1.
    Pearson CG; Osborn DP; Giddings TH; Beales PL; Winey M
    J Cell Biol; 2009 Dec; 187(6):905-20. PubMed ID: 20008567
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unique sequences and predicted functions of myosins in Tetrahymena thermophila.
    Sugita M; Iwataki Y; Nakano K; Numata O
    Gene; 2011 Jul; 480(1-2):10-20. PubMed ID: 21338663
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genomic and proteomic evidence for a second family of dense core granule cargo proteins in Tetrahymena thermophila.
    Bowman GR; Smith DG; Michael Siu KW; Pearlman RE; Turkewitz AP
    J Eukaryot Microbiol; 2005; 52(4):291-7. PubMed ID: 16014006
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Usual and unusual biochemical properties of ADF/cofilin-like protein Adf73p in ciliate Tetrahymena thermophila.
    Shiozaki N; Nakano K; Takaine M; Abe H; Numata O
    Biochem Biophys Res Commun; 2009 Dec; 390(1):54-9. PubMed ID: 19769938
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Leishmania MAP kinases--familiar proteins in an unusual context.
    Wiese M
    Int J Parasitol; 2007 Aug; 37(10):1053-62. PubMed ID: 17548090
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MyTH4, independent of its companion FERM domain, affects the organization of an intramacronuclear microtubule array and is involved in elongation of the macronucleus in Tetrahymena thermophila.
    Gotesman M; Hosein RE; Gavin RH
    Cytoskeleton (Hoboken); 2011 Apr; 68(4):220-36. PubMed ID: 21387572
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Total internal reflection fluorescence microscopy of intraflagellar transport in Tetrahymena thermophila.
    Jiang YY; Lechtreck K; Gaertig J
    Methods Cell Biol; 2015; 127():445-56. PubMed ID: 25837403
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of properties of cilia using Tetrahymena thermophila.
    Rajagopalan V; Corpuz EO; Hubenschmidt MJ; Townsend CR; Asai DJ; Wilkes DE
    Methods Mol Biol; 2009; 586():283-99. PubMed ID: 19768437
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Subcellular localization and role of Ran1 in Tetrahymena thermophila amitotic macronucleus.
    Liang H; Xu J; Zhao D; Tian H; Yang X; Liang A; Wang W
    FEBS J; 2012 Jul; 279(14):2520-33. PubMed ID: 22594798
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.