These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 12547438)

  • 1. Combined quantum and molecular mechanics calculations on metalloproteins.
    Ryde U
    Curr Opin Chem Biol; 2003 Feb; 7(1):136-42. PubMed ID: 12547438
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiscale Quantum Refinement Approaches for Metalloproteins.
    Yan Z; Li X; Chung LW
    J Chem Theory Comput; 2021 Jun; 17(6):3783-3796. PubMed ID: 34032440
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accurate metal-site structures in proteins obtained by combining experimental data and quantum chemistry.
    Ryde U
    Dalton Trans; 2007 Feb; (6):607-25. PubMed ID: 17268593
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Review on the QM/MM Methodologies and Their Application to Metalloproteins.
    Tzeliou CE; Mermigki MA; Tzeli D
    Molecules; 2022 Apr; 27(9):. PubMed ID: 35566011
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A test of ligand field molecular mechanics as an efficient alternative to QM/MM for modelling metalloproteins: the structures of oxidised type I copper centres.
    Deeth RJ
    Chem Commun (Camb); 2006 Jun; (24):2551-3. PubMed ID: 16779474
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extension of QM/MM docking and its applications to metalloproteins.
    Cho AE; Rinaldo D
    J Comput Chem; 2009 Dec; 30(16):2609-16. PubMed ID: 19373896
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-throughput quantum-mechanics/molecular-mechanics (ONIOM) macromolecular crystallographic refinement with PHENIX/DivCon: the impact of mixed Hamiltonian methods on ligand and protein structure.
    Borbulevych O; Martin RI; Westerhoff LM
    Acta Crystallogr D Struct Biol; 2018 Nov; 74(Pt 11):1063-1077. PubMed ID: 30387765
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fragment quantum mechanical calculation of proteins and its applications.
    He X; Zhu T; Wang X; Liu J; Zhang JZ
    Acc Chem Res; 2014 Sep; 47(9):2748-57. PubMed ID: 24851673
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of the peroxy adduct in multicopper oxidases by a combination of computational chemistry and extended X-ray absorption fine-structure measurements.
    Ryde U; Hsiao YW; Rulísek L; Solomon EI
    J Am Chem Soc; 2007 Jan; 129(4):726-7. PubMed ID: 17243785
    [No Abstract]   [Full Text] [Related]  

  • 10. The O
    Askerka M; Brudvig GW; Batista VS
    Acc Chem Res; 2017 Jan; 50(1):41-48. PubMed ID: 28001034
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantum effects in cation interactions with first and second coordination shell ligands in metalloproteins.
    Ngo V; da Silva MC; Kubillus M; Li H; Roux B; Elstner M; Cui Q; Salahub DR; Noskov SY
    J Chem Theory Comput; 2015 Oct; 11(10):4992-5001. PubMed ID: 26574284
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantum mechanical methods for the investigation of metalloproteins and related bioinorganic compounds.
    Bertini L; Bruschi M; Cosentino U; Greco C; Moro G; Zampella G; De Gioia L
    Methods Mol Biol; 2014; 1122():207-68. PubMed ID: 24639262
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A combination of docking, QM/MM methods, and MD simulation for binding affinity estimation of metalloprotein ligands.
    Khandelwal A; Lukacova V; Comez D; Kroll DM; Raha S; Balaz S
    J Med Chem; 2005 Aug; 48(17):5437-47. PubMed ID: 16107143
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toward on-the-fly quantum mechanical/molecular mechanical (QM/MM) docking: development and benchmark of a scoring function.
    Chaskar P; Zoete V; Röhrig UF
    J Chem Inf Model; 2014 Nov; 54(11):3137-52. PubMed ID: 25296988
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Active site structures and the redox properties of blue copper proteins: atomic resolution structure of azurin II and electronic structure calculations of azurin, plastocyanin and stellacyanin.
    Paraskevopoulos K; Sundararajan M; Surendran R; Hough MA; Eady RR; Hillier IH; Hasnain SS
    Dalton Trans; 2006 Jul; (25):3067-76. PubMed ID: 16786065
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reaction path potential for complex systems derived from combined ab initio quantum mechanical and molecular mechanical calculations.
    Lu Z; Yang W
    J Chem Phys; 2004 Jul; 121(1):89-100. PubMed ID: 15260525
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Refinement of protein crystal structures using energy restraints derived from linear-scaling quantum mechanics.
    Yu N; Yennawar HP; Merz KM
    Acta Crystallogr D Biol Crystallogr; 2005 Mar; 61(Pt 3):322-32. PubMed ID: 15735343
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantum chemical calculations of spectroscopic properties of metalloproteins and model compounds: EPR and Mössbauer properties.
    Neese F
    Curr Opin Chem Biol; 2003 Feb; 7(1):125-35. PubMed ID: 12547437
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum mechanics/molecular mechanics minimum free-energy path for accurate reaction energetics in solution and enzymes: sequential sampling and optimization on the potential of mean force surface.
    Hu H; Lu Z; Parks JM; Burger SK; Yang W
    J Chem Phys; 2008 Jan; 128(3):034105. PubMed ID: 18205486
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conversion of light-energy into molecular strain in the photocycle of the photoactive yellow protein.
    Gamiz-Hernandez AP; Kaila VR
    Phys Chem Chem Phys; 2016 Jan; 18(4):2802-9. PubMed ID: 26726853
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.