BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 12547821)

  • 41. Streptococcus pyogenes quinolinate-salvage pathway-structural and functional studies of quinolinate phosphoribosyl transferase and NH
    Booth WT; Morris TL; Mysona DP; Shah MJ; Taylor LK; Karlin TW; Clary K; Majorek KA; Offermann LR; Chruszcz M
    FEBS J; 2017 Aug; 284(15):2425-2441. PubMed ID: 28618168
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cloning, expression, purification, crystallization and preliminary X-ray diffraction studies of NAD synthetase from methicillin-resistant Staphylococcus aureus.
    Arbade GK; Srivastava SK
    Acta Crystallogr F Struct Biol Commun; 2015 Jun; 71(Pt 6):763-9. PubMed ID: 26057809
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Crystal structure of NH3-dependent NAD+ synthetase from Bacillus subtilis.
    Rizzi M; Nessi C; Mattevi A; Coda A; Bolognesi M; Galizzi A
    EMBO J; 1996 Oct; 15(19):5125-34. PubMed ID: 8895556
    [TBL] [Abstract][Full Text] [Related]  

  • 44. "Pinching" the ammonia tunnel of CTP synthase unveils coordinated catalytic and allosteric-dependent control of ammonia passage.
    McCluskey GD; Bearne SL
    Biochim Biophys Acta Gen Subj; 2018 Dec; 1862(12):2714-2727. PubMed ID: 30251661
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The Helicobacter pylori amidotransferase GatCAB is equally efficient in glutamine-dependent transamidation of Asp-tRNAAsn and Glu-tRNAGln.
    Sheppard K; Akochy PM; Salazar JC; Söll D
    J Biol Chem; 2007 Apr; 282(16):11866-73. PubMed ID: 17329242
    [TBL] [Abstract][Full Text] [Related]  

  • 46. NAD synthetase.
    Zalkin H
    Methods Enzymol; 1985; 113():297-302. PubMed ID: 3003498
    [No Abstract]   [Full Text] [Related]  

  • 47. [Microbial NAD synthetase and its inhibitors--a review].
    Bi J; Wang H; Xie J
    Wei Sheng Wu Xue Bao; 2011 Mar; 51(3):305-12. PubMed ID: 21604544
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Analysis of whole body ammonia metabolism in Aedes aegypti using [15N]-labeled compounds and mass spectrometry.
    Scaraffia PY; Zhang Q; Wysocki VH; Isoe J; Wells MA
    Insect Biochem Mol Biol; 2006 Aug; 36(8):614-22. PubMed ID: 16876704
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A novel deamido-NAD+-binding site revealed by the trapped NAD-adenylate intermediate in the NAD+ synthetase structure.
    Rizzi M; Bolognesi M; Coda A
    Structure; 1998 Sep; 6(9):1129-40. PubMed ID: 9753692
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Amidoligases with ATP-grasp, glutamine synthetase-like and acetyltransferase-like domains: synthesis of novel metabolites and peptide modifications of proteins.
    Iyer LM; Abhiman S; Maxwell Burroughs A; Aravind L
    Mol Biosyst; 2009 Dec; 5(12):1636-60. PubMed ID: 20023723
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Direct molecular and spectroscopic evidence for increased ammonia removal capacity of skeletal muscle in acute liver failure.
    Chatauret N; Desjardins P; Zwingmann C; Rose C; Rao KV; Butterworth RF
    J Hepatol; 2006 Jun; 44(6):1083-8. PubMed ID: 16530878
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Glutamine and asparagine as nitrogen donors for reductant-dependent glutamate synthesis in pea roots.
    Miflin BJ; Lea PJ
    Biochem J; 1975 Aug; 149(2):403-9. PubMed ID: 170914
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Mechanistic issues in asparagine synthetase catalysis.
    Richards NG; Schuster SM
    Adv Enzymol Relat Areas Mol Biol; 1998; 72():145-98. PubMed ID: 9559053
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Expression of four glutamine synthetase genes in the early stages of development of rainbow trout (Oncorhynchus mykiss) in relationship to nitrogen excretion.
    Essex-Fraser PA; Steele SL; Bernier NJ; Murray BW; Stevens ED; Wright PA
    J Biol Chem; 2005 May; 280(21):20268-73. PubMed ID: 15781468
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Inactivation of glutamine synthetases by an NAD:arginine ADP-ribosyltransferase.
    Moss J; Watkins PA; Stanley SJ; Purnell MR; Kidwell WR
    J Biol Chem; 1984 Apr; 259(8):5100-4. PubMed ID: 6143754
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Gain of glutaminase function in mutants of the ammonia-specific frog carbamoyl phosphate synthetase.
    Saeed-Kothe A; Powers-Lee SG
    J Biol Chem; 2003 Jul; 278(29):26722-6. PubMed ID: 12738780
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Identification of the regulatory domain of the mammalian multifunctional protein CAD by the construction of an Escherichia coli hamster hybrid carbamyl-phosphate synthetase.
    Liu X; Guy HI; Evans DR
    J Biol Chem; 1994 Nov; 269(44):27747-55. PubMed ID: 7525561
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The N-terminal cysteine of human asparagine synthetase is essential for glutamine-dependent activity.
    Van Heeke G; Schuster SM
    J Biol Chem; 1989 Nov; 264(33):19475-7. PubMed ID: 2573597
    [TBL] [Abstract][Full Text] [Related]  

  • 59. An alternative PII protein in the regulation of glutamine synthetase in Escherichia coli.
    van Heeswijk WC; Hoving S; Molenaar D; Stegeman B; Kahn D; Westerhoff HV
    Mol Microbiol; 1996 Jul; 21(1):133-46. PubMed ID: 8843440
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Metabolic Alterations in NADSYN1-Deficient Cells.
    Meijer NWF; Gerrits J; Zwakenberg S; Zwartkruis FJT; Verhoeven-Duif NM; Jans JJM
    Metabolites; 2023 Dec; 13(12):. PubMed ID: 38132878
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.