BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 12547821)

  • 61. Regulation of hepatic ammonia metabolism: the intercellular glutamine cycle.
    Häussinger D
    Adv Enzyme Regul; 1986; 25():159-80. PubMed ID: 2880476
    [TBL] [Abstract][Full Text] [Related]  

  • 62. The razor clam Sinonovacula constricta uses the strategy of conversion of toxic ammonia to glutamine in response to high environmental ammonia exposure.
    Zhang H; Sun G; Lin Z; Yao H; Dong Y
    Mol Biol Rep; 2020 Dec; 47(12):9579-9593. PubMed ID: 33245503
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Structure and function of the glutamine phosphoribosylpyrophosphate amidotransferase glutamine site and communication with the phosphoribosylpyrophosphate site.
    Kim JH; Krahn JM; Tomchick DR; Smith JL; Zalkin H
    J Biol Chem; 1996 Jun; 271(26):15549-57. PubMed ID: 8663035
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Crystal structures of mammalian glutamine synthetases illustrate substrate-induced conformational changes and provide opportunities for drug and herbicide design.
    Krajewski WW; Collins R; Holmberg-Schiavone L; Jones TA; Karlberg T; Mowbray SL
    J Mol Biol; 2008 Jan; 375(1):217-28. PubMed ID: 18005987
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Crystallographic and molecular dynamics simulation analysis of NAD synthetase from methicillin resistant Staphylococcus aureus (MRSA).
    Sultana KN; Kuldeep J; Siddiqi MI; Srivastava SK
    Int J Biol Macromol; 2020 Dec; 165(Pt B):2349-2362. PubMed ID: 33098904
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Ammonia metabolism in normal and portacaval-shunted rats.
    Cooper AJ
    Adv Exp Med Biol; 1990; 272():23-46. PubMed ID: 2103690
    [TBL] [Abstract][Full Text] [Related]  

  • 67. A 15N-n.m.r. study of cerebral, hepatic and renal nitrogen metabolism in hyperammonaemic rats.
    Farrow NA; Kanamori K; Ross BD; Parivar F
    Biochem J; 1990 Sep; 270(2):473-81. PubMed ID: 1976007
    [TBL] [Abstract][Full Text] [Related]  

  • 68. [13N]Ammonia and L-[amide-13N]glutamine metabolism in glutaminase-sensitive and glutaminase-resistant murine tumors.
    Rosenspire KC; Gelbard AS; Cooper AJ; Schmid FA; Roberts J
    Biochim Biophys Acta; 1985 Nov; 843(1-2):37-48. PubMed ID: 2865980
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Exposure to air, but not seawater, increases the glutamine content and the glutamine synthetase activity in the marsh clam Polymesoda expansa.
    Hiong KC; Peh WY; Loong AM; Wong WP; Chew SF; Ip YK
    J Exp Biol; 2004 Dec; 207(Pt 26):4605-14. PubMed ID: 15579556
    [TBL] [Abstract][Full Text] [Related]  

  • 70. 4-methyleneglutamine synthetase: a new amide synthetase present in germinating peanuts.
    Winter HC; Su TZ; Dekker EE
    Biochem Biophys Res Commun; 1983 Mar; 111(2):484-9. PubMed ID: 6838571
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Structure and mechanism of Escherichia coli glutathionylspermidine amidase belonging to the family of cysteine; histidine-dependent amidohydrolases/peptidases.
    Pai CH; Wu HJ; Lin CH; Wang AH
    Protein Sci; 2011 Mar; 20(3):557-66. PubMed ID: 21226054
    [TBL] [Abstract][Full Text] [Related]  

  • 72. The MTCY428.08 gene of Mycobacterium tuberculosis codes for NAD+ synthetase.
    Cantoni R; Branzoni M; Labò M; Rizzi M; Riccardi G
    J Bacteriol; 1998 Jun; 180(12):3218-21. PubMed ID: 9620974
    [TBL] [Abstract][Full Text] [Related]  

  • 73. The Escherichia coli efg gene and the Rhodobacter capsulatus adgA gene code for NH3-dependent NAD synthetase.
    Willison JC; Tissot G
    J Bacteriol; 1994 Jun; 176(11):3400-2. PubMed ID: 8195100
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Glutamine synthetase in tilapia gastrointestinal tract: zonation, cDNA and induction by cortisol.
    Mommsen TP; Busby ER; von Schalburg KR; Evans JC; Osachoff HL; Elliott ME
    J Comp Physiol B; 2003 Jul; 173(5):419-27. PubMed ID: 12783264
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Possible roles of glutamine synthetase in responding to environmental changes in a scleractinian coral.
    Su Y; Zhou Z; Yu X
    Mol Biol Rep; 2018 Dec; 45(6):2115-2124. PubMed ID: 30203242
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Formylglycinamide ribonucleotide synthetase from Escherichia coli: cloning, sequencing, overproduction, isolation, and characterization.
    Schendel FJ; Mueller E; Stubbe J; Shiau A; Smith JM
    Biochemistry; 1989 Mar; 28(6):2459-71. PubMed ID: 2659070
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Tertiary and Quaternary Structure Organization in GMP Synthetases: Implications for Catalysis.
    Ballut L; Violot S; Galisson F; Gonçalves IR; Martin J; Shivakumaraswamy S; Carrique L; Balaram H; Aghajari N
    Biomolecules; 2022 Jun; 12(7):. PubMed ID: 35883427
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Reversible dissociation of carbamyl phosphate synthetase into a regulated synthesis subunit and a subunit required for glutamine utilization.
    Trotta PP; Burt ME; Haschemeyer RH; Meister A
    Proc Natl Acad Sci U S A; 1971 Oct; 68(10):2599-603. PubMed ID: 4944634
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Structures of Escherichia coli NAD synthetase with substrates and products reveal mechanistic rearrangements.
    Jauch R; Humm A; Huber R; Wahl MC
    J Biol Chem; 2005 Apr; 280(15):15131-40. PubMed ID: 15699042
    [TBL] [Abstract][Full Text] [Related]  

  • 80. In vivo mutational analysis of highly conserved amino acid residues of the small subunit Cpa1p of the carbamylphosphate synthetase of Saccharomyces cerevisiae.
    Bernard A; Erbs P; Demuyter P; Jund R
    Yeast; 1997 Sep; 13(11):1021-8. PubMed ID: 9290206
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.