These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 12549126)
1. [Separation of p-aminobenzenearsonic acid and its oxide by ion-pair reversed-phase high performance liquid chromatography]. Kang J; Ma X; Meng L; Ma D Se Pu; 1999 May; 17(3):275-7. PubMed ID: 12549126 [TBL] [Abstract][Full Text] [Related]
2. [Effects of buffer salt types and non-counter ions of ion-pair reagents on the retention behavior of strongly ionized acid compounds in ion-pair reversed-phase liquid chromatography]. Liu X; Gao W; Liang C; Qiao J; Wang K; Lian H Se Pu; 2021 Sep; 39(9):1021-1029. PubMed ID: 34486842 [TBL] [Abstract][Full Text] [Related]
3. [A rapid separation and quantitation of sodium cyclamate in food by ion-pair reversed-phase high performance liquid chromatography]. Li Z; Yin Y Se Pu; 1999 May; 17(3):278-9. PubMed ID: 12549127 [TBL] [Abstract][Full Text] [Related]
4. Synthesis of a mixed-model stationary phase derived from glutamine for HPLC separation of structurally different biologically active compounds: HILIC and reversed-phase applications. Aral T; Aral H; Ziyadanoğulları B; Ziyadanoğulları R Talanta; 2015 Jan; 131():64-73. PubMed ID: 25281074 [TBL] [Abstract][Full Text] [Related]
5. Development of a novel amide-silica stationary phase for the reversed-phase HPLC separation of different classes of phytohormones. Aral H; Aral T; Ziyadanoğulları B; Ziyadanoğulları R Talanta; 2013 Nov; 116():155-63. PubMed ID: 24148387 [TBL] [Abstract][Full Text] [Related]
6. Improved chromatographic separation of thio-arsenic compounds by reversed-phase high performance liquid chromatography-inductively coupled plasma mass spectrometry. Raml R; Goessler W; Francesconi KA J Chromatogr A; 2006 Sep; 1128(1-2):164-70. PubMed ID: 16854422 [TBL] [Abstract][Full Text] [Related]
7. Retention of ionisable compounds on high-performance liquid chromatography XVII. Estimation of the pH variation of aqueous buffers with the change of the methanol fraction of the mobile phase. Subirats X; Bosch E; Rosés M J Chromatogr A; 2007 Jan; 1138(1-2):203-15. PubMed ID: 17118378 [TBL] [Abstract][Full Text] [Related]
9. Modeling the retention mechanism for high-performance liquid chromatography with a chiral ligand mobile phase and enantioseparation of mandelic acid derivatives. Tong S; Shen M; Zhang H; Cheng D; Yan J J Sep Sci; 2015 Jun; 38(12):2085-92. PubMed ID: 25864388 [TBL] [Abstract][Full Text] [Related]
10. Investigation on liquid chromatographic separation of basic compounds using silica column with aqueous/organic mobile phase containing triethylamine and acetic acid. Wu AB; Huang MC; Ho HO; Yeh GC; Sheu MT Biomed Chromatogr; 2004 Sep; 18(7):443-9. PubMed ID: 15340969 [TBL] [Abstract][Full Text] [Related]
11. Combined effects of mobile phase composition and temperature on the retention of homologous and polar test compounds on polydentate C8 column. Jandera P; Krupczyńska K; Vynuchalová K; Buszewski B J Chromatogr A; 2010 Sep; 1217(39):6052-60. PubMed ID: 20728897 [TBL] [Abstract][Full Text] [Related]
12. Secondary isotope effects in liquid chromatography behaviour of 2H and 3H labelled solutes and solvents. Valleix A; Carrat S; Caussignac C; Léonce E; Tchapla A J Chromatogr A; 2006 May; 1116(1-2):109-26. PubMed ID: 16631181 [TBL] [Abstract][Full Text] [Related]
13. Characterization of the properties of stationary phases for liquid chromatography in aqueous mobile phases using aromatic sulphonic acids as the test compounds. Jandera P; Bocian S; Molíková M; Buszewski B J Chromatogr A; 2009 Jan; 1216(2):237-48. PubMed ID: 19081105 [TBL] [Abstract][Full Text] [Related]
14. Analysis of selected ionic liquid cations by ion exchange chromatography and reversed-phase high performance liquid chromatography. Stepnowski P; Mrozik W J Sep Sci; 2005 Feb; 28(2):149-54. PubMed ID: 15754822 [TBL] [Abstract][Full Text] [Related]
15. [Retention behavior of solutes on liquid chromatographic column packed with dynamically modified zirconia]. Zhang Q; Feng Y; Yan L; Da S Se Pu; 1999 May; 17(3):229-31. PubMed ID: 12549113 [TBL] [Abstract][Full Text] [Related]
16. Green chromatography separation of analytes of greatly differing properties using a polyethylene glycol stationary phase and a low-toxic water-based mobile phase. Šatínský D; Brabcová I; Maroušková A; Chocholouš P; Solich P Anal Bioanal Chem; 2013 Jul; 405(18):6105-15. PubMed ID: 23657456 [TBL] [Abstract][Full Text] [Related]
17. [Study on separation of sulfonamides by capillary high-performance liquid chromatography and electrochromatography]. Yang RF; Shi ZG; Feng YQ; Da SL Yao Xue Xue Bao; 2003 Feb; 38(2):129-32. PubMed ID: 12778749 [TBL] [Abstract][Full Text] [Related]
18. Quantitative determination of p-aminosalicylic acid and its degradation product m-aminophenol in pellets by ion-pair high-performance liquid chromatography applying the monolithic Chromolith Speedrod RP-18e column. Vasbinder E; Van der Weken G; Vander Heyden Y; Baeyens WR; Debunne A; Remon JP; García-Campaña AM Biomed Chromatogr; 2004 Jan; 18(1):55-63. PubMed ID: 14872550 [TBL] [Abstract][Full Text] [Related]
19. Retention of phenylarsenicals in soils derived from volcanic materials. Arroyo-Abad U; Elizalde-González MP; Hidalgo-Moreno CM; Mattusch J; Wennrich R J Hazard Mater; 2011 Feb; 186(2-3):1328-34. PubMed ID: 21194836 [TBL] [Abstract][Full Text] [Related]
20. Effect of mobile phase composition on the retention of selected alkaloids in reversed-phase liquid chromatography with chaotropic salts. Flieger J J Chromatogr A; 2007 Dec; 1175(2):207-16. PubMed ID: 17980887 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]