These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 12549126)
21. Imidazoline type stationary phase for hydrophilic interaction chromatography and reversed-phase liquid chromatography. Li Y; Feng Y; Chen T; Zhang H J Chromatogr A; 2011 Sep; 1218(35):5987-94. PubMed ID: 21543075 [TBL] [Abstract][Full Text] [Related]
22. Factors influencing the separation of oligonucleotides using reversed-phase/ion-exchange mixed-mode high performance liquid chromatography columns. Biba M; Jiang E; Mao B; Zewge D; Foley JP; Welch CJ J Chromatogr A; 2013 Aug; 1304():69-77. PubMed ID: 23859796 [TBL] [Abstract][Full Text] [Related]
23. Investigation of the retention/pH profile of zwitterionic fluoroquinolones in reversed-phase and ion-interaction high performance liquid chromatography. Pistos C; Tsantili-Kakoulidou A; Koupparis M J Pharm Biomed Anal; 2005 Sep; 39(3-4):438-43. PubMed ID: 15894451 [TBL] [Abstract][Full Text] [Related]
24. Preparation and enantioseparation of a new click derived β-cyclodextrin chiral stationary phase. Fan Q; Zhang K; Tian LW; Fan J; Zheng SR; Zhang WG J Chromatogr Sci; 2014; 52(5):453-9. PubMed ID: 23788019 [TBL] [Abstract][Full Text] [Related]
25. Analysis of normal and modified nucleosides in urine samples by high-performance liquid chromatography with different stationary phases. Studzińska S; Buszewski B Biomed Chromatogr; 2014 Aug; 28(8):1140-6. PubMed ID: 24453057 [TBL] [Abstract][Full Text] [Related]
26. [Separation of different phosphatidyl cholines by reversed-phase ion-pair high performance liquid chromatography]. Wang ZH; Lu XQ; Hong XK Se Pu; 2002 May; 20(3):249-52. PubMed ID: 12541948 [TBL] [Abstract][Full Text] [Related]
27. Retention models for ionizable compounds in reversed-phase liquid chromatography: effect of variation of mobile phase composition and temperature. Rosés M; Subirats X; Bosch E J Chromatogr A; 2009 Mar; 1216(10):1756-75. PubMed ID: 19167714 [TBL] [Abstract][Full Text] [Related]
28. Reversed-phase chiral HPLC and LC/MS analysis with tris(chloromethylphenylcarbamate) derivatives of cellulose and amylose as chiral stationary phases. Peng L; Jayapalan S; Chankvetadze B; Farkas T J Chromatogr A; 2010 Oct; 1217(44):6942-55. PubMed ID: 20863505 [TBL] [Abstract][Full Text] [Related]
29. A multiple-function stationary phase based on perhydro-26-membered hexaazamacrocycle for high-performance liquid chromatography. He L; Zhang J; Sun Y; Liu J; Jiang X; Qu L J Chromatogr A; 2010 Sep; 1217(38):5971-7. PubMed ID: 20719319 [TBL] [Abstract][Full Text] [Related]
30. Hydrophilic interaction chromatography in nonaqueous elution mode for separation of hydrophilic analytes on silica-based packings with noncharged polar bondings. Bicker W; Wu J; Lämmerhofer M; Lindner W J Sep Sci; 2008 Sep; 31(16-17):2971-87. PubMed ID: 18785146 [TBL] [Abstract][Full Text] [Related]
31. Chromatographic retention behaviour, modelling and separation optimisation of the quaternary ammonium salt isometamidium chloride and related compounds on a range of reversed-phase liquid chromatographic stationary phases. Schad GJ; Euerby MR; Skellern GG; Tettey JN Anal Bioanal Chem; 2012 Jul; 404(1):239-55. PubMed ID: 22618328 [TBL] [Abstract][Full Text] [Related]
32. Determination of linezolid in human serum by reversed-phase high-performance liquid chromatography with ultraviolet and diode array detection. Cios A; Kuś K; Szymura-Oleksiak J Acta Pol Pharm; 2013; 70(4):631-41. PubMed ID: 23923387 [TBL] [Abstract][Full Text] [Related]
33. Retention of nucleic acids in ion-pair reversed-phase high-performance liquid chromatography depends not only on base composition but also on base sequence. Qiao JQ; Liang C; Wei LC; Cao ZM; Lian HZ J Sep Sci; 2016 Dec; 39(23):4502-4511. PubMed ID: 27748038 [TBL] [Abstract][Full Text] [Related]
34. Glucaminium ionic liquid-functionalized stationary phase for the separation of nucleosides in hydrophilic interaction chromatography. Jiang Q; Zhang M; Wang X; Guo Y; Qiu H; Zhang S Anal Bioanal Chem; 2015 Oct; 407(25):7667-72. PubMed ID: 26231689 [TBL] [Abstract][Full Text] [Related]
35. [Analysis of monosaccharides and uronic acids in polysaccharides by pre-column derivatization with p-aminobenzoic acid and high performance liquid chromatography]. Hao G; Chen S; Zhu S; Yin H; Dai J; Cao Y Se Pu; 2007 Jan; 25(1):75-9. PubMed ID: 17432580 [TBL] [Abstract][Full Text] [Related]
36. High performance liquid chromatography separation of structurally related enkephalins on quaternary ammonium-embedded stationary phase in isocratic mode. Abbood A; Smadja C; Taverna M; Herrenknecht C J Chromatogr A; 2010 Jan; 1217(4):450-8. PubMed ID: 19962150 [TBL] [Abstract][Full Text] [Related]
37. Influence of variation in mobile phase pH and solute pK(a) with the change of organic modifier fraction on QSRRs of hydrophobicity and RP-HPLC retention of weakly acidic compounds. Han SY; Liang C; Zou K; Qiao JQ; Lian HZ; Ge X Talanta; 2012 Nov; 101():64-70. PubMed ID: 23158292 [TBL] [Abstract][Full Text] [Related]
38. Separation of beta-receptor blockers and analogs by capillary liquid chromatography (CLC) and pressurized capillary electrochromatography (pCEC) using a vancomycin chiral stationary phase column. Chen Z; Zeng S; Yao T Pharmazie; 2007 Aug; 62(8):585-92. PubMed ID: 17867552 [TBL] [Abstract][Full Text] [Related]
39. Effect of ionic liquid additives to mobile phase on separation and system efficiency for HPLC of selected alkaloids on different stationary phases. Petruczynik A J Chromatogr Sci; 2012 Apr; 50(4):287-93. PubMed ID: 22368114 [TBL] [Abstract][Full Text] [Related]
40. Mobile phase effects in reversed-phase liquid chromatography: a comparison of acetonitrile/water and methanol/water solvents as studied by molecular simulation. Rafferty JL; Siepmann JI; Schure MR J Chromatogr A; 2011 Apr; 1218(16):2203-13. PubMed ID: 21388628 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]