These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 12549388)

  • 1. [Degradation of phytic acid in rapeseed meal by two strains of molds].
    Xiang W; Zhong Y
    Wei Sheng Wu Xue Bao; 1998 Feb; 38(1):44-51. PubMed ID: 12549388
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lignin degradation in a compost environment by the deuteromycete Paecilomyces inflatus.
    Kluczek-Turpeinen B; Tuomela M; Hatakka A; Hofrichter M
    Appl Microbiol Biotechnol; 2003 May; 61(4):374-9. PubMed ID: 12743768
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-efficiency removal of phytic acid in soy meal using two-stage temperature-induced Aspergillus oryzae solid-state fermentation.
    Chen L; Vadlani PV; Madl RL
    J Sci Food Agric; 2014 Jan; 94(1):113-8. PubMed ID: 23633040
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving of hydrolases biosythesis by solid-state fermentation of Penicillium camemberti on rapeseed cake.
    Boratyński F; Szczepańska E; Grudniewska A; Gniłka R; Olejniczak T
    Sci Rep; 2018 Jul; 8(1):10157. PubMed ID: 29976981
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-level of xylanase production by the thermophilic Paecilomyces themophila J18 on wheat straw in solid-state fermentation.
    Yang SQ; Yan QJ; Jiang ZQ; Li LT; Tian HM; Wang YZ
    Bioresour Technol; 2006 Oct; 97(15):1794-800. PubMed ID: 16230011
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biodegradation of 2,4,6-trinitrophenol by Rhodococcus sp. isolated from a picric acid-contaminated soil.
    Shen J; Zhang J; Zuo Y; Wang L; Sun X; Li J; Han W; He R
    J Hazard Mater; 2009 Apr; 163(2-3):1199-206. PubMed ID: 18762376
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cellulases from two Penicillium sp. strains isolated from subtropical forest soil: production and characterization.
    Picart P; Diaz P; Pastor FI
    Lett Appl Microbiol; 2007 Jul; 45(1):108-13. PubMed ID: 17594469
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of copper ions on the fatty acid profiles of soil filamentous fungi.
    Olishevska SV; Karpenko YV; Zhdanova NM; Ostapchuk AM
    Mikrobiol Z; 2008; 70(6):59-66. PubMed ID: 19351050
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Solid-state fermentation with Penicillium sp. PT95 for carotenoid production].
    Han J; Xu J
    Wei Sheng Wu Xue Bao; 1999 Apr; 39(2):148-53. PubMed ID: 12555420
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low-temperature biodegradation of high amounts of phenol by Rhodococcus spp. and basidiomycetous yeasts.
    Margesin R; Fonteyne PA; Redl B
    Res Microbiol; 2005; 156(1):68-75. PubMed ID: 15636749
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Beneficial effects of Rhizopus oligosporus fermentation on reduction of glucosinolates, fibre and phytic acid in rapeseed (Brassica napus) meal.
    Vig AP; Walia A
    Bioresour Technol; 2001 Jul; 78(3):309-12. PubMed ID: 11341693
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Degradation/solubilization of Chinese lignite by Penicillium sp. P6.
    Yuan HL; Yang JS; Wang FQ; Chen WX
    Prikl Biokhim Mikrobiol; 2006; 42(1):59-62. PubMed ID: 16521578
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increase of protein extraction yield from rapeseed meal through a pretreatment with phytase.
    Rodrigues IM; Carvalho MGV; Rocha JM
    J Sci Food Agric; 2017 Jun; 97(8):2641-2646. PubMed ID: 27739088
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potential of hexadecane-utilizing soil-microorganisms for growth on hexadecanol, hexadecanal and hexadecanoic acid as sole sources of carbon and energy.
    Dashti N; Al-Awadhi H; Khanafer M; Abdelghany S; Radwan S
    Chemosphere; 2008 Jan; 70(3):475-9. PubMed ID: 17675208
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The importance of lactic acid bacteria for phytate degradation during cereal dough fermentation.
    Reale A; Konietzny U; Coppola R; Sorrentino E; Greiner R
    J Agric Food Chem; 2007 Apr; 55(8):2993-7. PubMed ID: 17373819
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [New strains of soil bacilli which mineralize organic phosphorus compounds].
    Roĭ AA; Bulavenko LV; Kurdish IK
    Mikrobiol Z; 2001; 63(4):9-14. PubMed ID: 11692683
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Composting of food waste subjected to hydrothermal pretreatment and inoculated with Paecilomyces sp. FA13.
    Nakasaki K; Mimoto H; Tran QN; Oinuma A
    Bioresour Technol; 2015 Mar; 180():40-6. PubMed ID: 25585259
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Degradation of parathion by Penicillium waksmani Zaleski isolated from flooded acid sulphate soil.
    Rao AV; Sethunathan N
    Arch Microbiol; 1974 May; 97(3):203-8. PubMed ID: 4603203
    [No Abstract]   [Full Text] [Related]  

  • 19. Use of headspace SPME-GC-MS for the analysis of the volatiles produced by indoor molds grown on different substrates.
    Van Lancker F; Adams A; Delmulle B; De Saeger S; Moretti A; Van Peteghem C; De Kimpe N
    J Environ Monit; 2008 Oct; 10(10):1127-33. PubMed ID: 18843388
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modification of humic acids by the compost-dwelling deuteromycete Paecilomyces inflatus.
    Kluczek-Turpeinen B; Steffen KT; Tuomela M; Hatakka A; Hofrichter M
    Appl Microbiol Biotechnol; 2005 Jan; 66(4):443-9. PubMed ID: 15349698
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.