These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 12549546)

  • 41. Trends and transformation of nutrients and pesticides in a coastal plain aquifer system, United States.
    Denver JM; Tesoriero AJ; Barbaro JR
    J Environ Qual; 2010; 39(1):154-67. PubMed ID: 20048303
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Herbicide incorporation by irrigation and tillage impact on runoff loss.
    Potter TL; Truman CC; Strickland TC; Bosch DD; Webster TM
    J Environ Qual; 2008; 37(3):839-47. PubMed ID: 18453405
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Retention and runoff losses of atrazine and metribuzin in soil.
    Selim HM
    J Environ Qual; 2003; 32(3):1058-71. PubMed ID: 12809307
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Watershed vulnerability to herbicide transport in northern Missouri and southern Iowa streams.
    Lerch RN; Blanchard PE
    Environ Sci Technol; 2003 Dec; 37(24):5518-27. PubMed ID: 14717159
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Atrazine, deethylatrazine, and deisopropylatrazine in surface runoff from conservation tilled watersheds.
    Shipitalo MJ; Owens LB
    Environ Sci Technol; 2003 Mar; 37(5):944-50. PubMed ID: 12666925
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Spatial distribution of triazine residues in a shallow alluvial aquifer linked to groundwater residence time.
    Sassine L; Le Gal La Salle C; Khaska M; Verdoux P; Meffre P; Benfodda Z; Roig B
    Environ Sci Pollut Res Int; 2017 Mar; 24(8):6878-6888. PubMed ID: 27448811
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Comparative assessment of herbicide and fungicide runoff risk: a case study for peanut production in the Southern Atlantic Coastal Plain (USA).
    Potter TL; Bosch DD; Strickland TC
    Sci Total Environ; 2014 Aug; 490():1-10. PubMed ID: 24836324
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Fate of the herbicides 2,4,5-T, atrazine, and DNOC in a shallow, anaerobic aquifer investigated by in situ passive diffusive emitters and laboratory batch experiments.
    Arildskov NP; Pedersen PG; Albrechtsen HJ
    Ground Water; 2001; 39(6):819-30. PubMed ID: 11708448
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Comparison of three pesticide fate models with respect to the leaching of two herbicides under field conditions in an irrigated maize cropping system.
    Marín-Benito JM; Pot V; Alletto L; Mamy L; Bedos C; Barriuso E; Benoit P
    Sci Total Environ; 2014 Nov; 499():533-45. PubMed ID: 25130625
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Near-decadal changes in nitrate and pesticide concentrations in the South Platte River alluvial aquifer, 1993-2004.
    Paschke SS; Schaffrath KR; Mashburn SL
    J Environ Qual; 2008; 37(5 Suppl):S281-95. PubMed ID: 18765774
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Nitrate and chloride loading to groundwater from an irrigated north-central U.S. sand-plain vegatable field.
    Stites W; Kraft GJ
    J Environ Qual; 2001; 30(4):1176-84. PubMed ID: 11476494
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Herbicide transport to surface waters at field and watershed scales in a Mediterranean vineyard area.
    Louchart X; Voltz M; Andrieux P; Moussa R
    J Environ Qual; 2001; 30(3):982-91. PubMed ID: 11401289
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Simultaneous assessment of sources, processes, and factors influencing herbicide losses to surface waters in a small agricultural catchment.
    Leu C; Singer H; Stamm C; Müller SR; Schwarzenbach RP
    Environ Sci Technol; 2004 Jul; 38(14):3827-34. PubMed ID: 15298189
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Runoff of trifluralin, metolachlor, and metribuzin from a clay loam soil of Louisiana.
    Kim JH; Feagley SE
    J Environ Sci Health B; 2002 Sep; 37(5):405-15. PubMed ID: 12369759
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effect of sediment on the fate of metolachlor and atrazine in surface water.
    Rice PJ; Anderson TA; Coats JR
    Environ Toxicol Chem; 2004 May; 23(5):1145-55. PubMed ID: 15180365
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Assessing herbicide concentrations in the saturated and unsaturated zone of a Chalk aquifer in southern England.
    Gooddy DC; Bloomfield JP; Chilton PJ; Johnson AC; Williams RJ
    Ground Water; 2001; 39(2):262-71. PubMed ID: 11286073
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Herbicides and herbicide degradation products in Upper Midwest agricultural streams during August base-flow conditions.
    Kalkhoff SJ; Lee KE; Porter SD; Terrio PJ; Thurman EM
    J Environ Qual; 2003; 32(3):1025-35. PubMed ID: 12809303
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Herbicide retention in soil as affected by sugarcane mulch residue.
    Selim HM; Zhou L; Zhu H
    J Environ Qual; 2003; 32(4):1445-54. PubMed ID: 12931901
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Fate and movement of atrazine, cyanazine, metolachlor and selected degradation products in water resources of the deep Loess Hills of Southwestern Iowa, USA.
    Steinheimer TR; Scoggin KD
    J Environ Monit; 2001 Feb; 3(1):126-32. PubMed ID: 11253005
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Regression models for estimating concentrations of atrazine plus deethylatrazine in shallow groundwater in agricultural areas of the United States.
    Stackelberg PE; Barbash JE; Gilliom RJ; Stone WW; Wolock DM
    J Environ Qual; 2012; 41(2):479-94. PubMed ID: 22370411
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.