These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 12549573)

  • 1. Patterns of short-term sedimentation in a freshwater created marsh.
    Harter SK; Mitsch WJ
    J Environ Qual; 2003; 32(1):325-34. PubMed ID: 12549573
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The long-term nutrient accumulation with respect to anthropogenic impacts in the sediments from two freshwater marshes (Xianghai Wetlands, Northeast China).
    Wang GP; Liu JS; Tang J
    Water Res; 2004 Dec; 38(20):4462-74. PubMed ID: 15556221
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of vegetation on sedimentation and resuspension of soil particles in small constructed wetlands.
    Braskerud BC
    J Environ Qual; 2001; 30(4):1447-57. PubMed ID: 11476524
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nutrient retention via sedimentation in a created urban stormwater treatment wetland.
    Griffiths LN; Mitsch WJ
    Sci Total Environ; 2020 Jul; 727():138337. PubMed ID: 32330706
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long-term recovery of PCB-contaminated surface sediments at the Sangamo-westonl Twelvemile Creek/lake Hartwell Superfund Site.
    Brenner RC; Magar VS; Ickes JA; Foote EA; Abbott JE; Bingler LS; Crecelius EA
    Environ Sci Technol; 2004 Apr; 38(8):2328-37. PubMed ID: 15116837
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of river pulsing on sedimentation and nutrients in created riparian wetlands.
    Nahlik AM; Mitsch WJ
    J Environ Qual; 2008; 37(4):1634-43. PubMed ID: 18574197
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Climatic variability, hydrologic anomaly, and methane emission can turn productive freshwater marshes into net carbon sources.
    Chu H; Gottgens JF; Chen J; Sun G; Desai AR; Ouyang Z; Shao C; Czajkowski K
    Glob Chang Biol; 2015 Mar; 21(3):1165-81. PubMed ID: 25287051
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbon storage and sediment trapping by Egeria densa Planch., a globally invasive, freshwater macrophyte.
    Drexler JZ; Khanna S; Lacy JR
    Sci Total Environ; 2021 Feb; 755(Pt 1):142602. PubMed ID: 33348484
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wetland management reduces sediment and nutrient loading to the upper Mississippi river.
    Kreiling RM; Schubauer-Berigan JP; Richardson WB; Bartsch LA; Hughes PE; Cavanaugh JC; Strauss EA
    J Environ Qual; 2013; 42(2):573-83. PubMed ID: 23673850
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of river sediment on phosphorus chemistry of similarly aged natural and created wetlands in the Atchafalaya Delta, Louisiana, USA.
    Poach ME; Faulkner SP
    J Environ Qual; 2007; 36(4):1217-23. PubMed ID: 17596631
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Competing effects of vegetation density on sedimentation in deltaic marshes.
    Xu Y; Esposito CR; Beltrán-Burgos M; Nepf HM
    Nat Commun; 2022 Aug; 13(1):4641. PubMed ID: 35941151
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increasing Salt Marsh Elevation Using Sediment Augmentation: Critical Insights from Surface Sediments and Sediment Cores.
    Fard E; Brown LN; Ambrose RF; Whitcraft C; Thorne KM; Kemnitz NJ; Hammond DE; MacDonald GM
    Environ Manage; 2024 Mar; 73(3):614-633. PubMed ID: 37910218
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid settling of nanoparticles due to heteroaggregation with suspended sediment.
    Velzeboer I; Quik JT; van de Meent D; Koelmans AA
    Environ Toxicol Chem; 2014 Aug; 33(8):1766-73. PubMed ID: 24753080
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamics of suspended sediment exchange and transport in a degraded mangrove creek in Kenya.
    Kitheka JU; Ongwenyi GS; Mavuti KM
    Ambio; 2002 Dec; 31(7-8):580-7. PubMed ID: 12572826
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Disturbance of sedimentary processes in tidal salt marshes invaded by exotic vegetation.
    Choi SM; Seo JY; Jeong SW; Lee MJ; Ha HK
    Sci Total Environ; 2021 Dec; 799():149303. PubMed ID: 34358748
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Variation of sedimentation rate in the semi-enclosed bay determined by
    Lovrenčić Mikelić I; Oreščanin V; Škaro K
    J Environ Radioact; 2017 Jan; 166(Pt 1):112-125. PubMed ID: 27157297
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of vegetation in mitigation of methyl parathion runoff.
    Moore MT; Bennett ER; Cooper CM; Smith S; Farris JL; Drouillard KG; Schulz R
    Environ Pollut; 2006 Jul; 142(2):288-94. PubMed ID: 16314013
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Short-term sedimentation dynamics in mesotidal marshes.
    Carrasco AR; Kombiadou K; Matias A
    Sci Rep; 2023 Feb; 13(1):1921. PubMed ID: 36732596
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Eutrophication and sedimentation patterns in complete exploitation of water resources scenarios: an example from Northwestern semi-arid Mexico.
    Sánchez-Carrillo S; Alatorre LC; Sánchez-Andrés R; Garatuza-Payán J
    Environ Monit Assess; 2007 Sep; 132(1-3):377-93. PubMed ID: 17171240
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrological and biogeochemical controls governing the speciation and accumulation of selenium in a wetland influenced by mine drainage.
    Martin AJ; Fraser C; Simpson S; Belzile N; Chen YW; London J; Wallschläger D
    Environ Toxicol Chem; 2018 Jul; 37(7):1824-1838. PubMed ID: 29480546
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.