These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 12551770)

  • 1. Sonochemical degradation of phenol in water: a comparison of classical equipment with a new cylindrical reactor.
    Entezari MH; Pétrier C; Devidal P
    Ultrason Sonochem; 2003 Mar; 10(2):103-8. PubMed ID: 12551770
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of operating parameters on sonochemical decomposition of phenol.
    Kidak R; Ince NH
    J Hazard Mater; 2006 Oct; 137(3):1453-7. PubMed ID: 16730406
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrasonic waste-water treatment: incidence of ultrasonic frequency on the rate of phenol and carbon tetrachloride degradation.
    Pétrier C; Francony A
    Ultrason Sonochem; 1997 Oct; 4(4):295-300. PubMed ID: 11233811
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Degradation of dichlorvos containing wastewaters using sonochemical reactors.
    Golash N; Gogate PR
    Ultrason Sonochem; 2012 Sep; 19(5):1051-60. PubMed ID: 22456064
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of irradiation distance on degradation of phenol using indirect ultrasonic irradiation method.
    Kobayashi D; Sano K; Takeuchi Y; Terasaka K
    Ultrason Sonochem; 2011 Sep; 18(5):1205-10. PubMed ID: 21342780
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of hydrogen peroxide on the sonochemical degradation of phenol and bisphenol A.
    Lim M; Son Y; Khim J
    Ultrason Sonochem; 2014 Nov; 21(6):1976-81. PubMed ID: 24746037
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of coal ash on sonochemical degradation of phenol in water.
    Nakui H; Okitsu K; Maeda Y; Nishimura R
    Ultrason Sonochem; 2007 Feb; 14(2):191-6. PubMed ID: 16737837
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of ultrasonic degradation rates constants of methylene blue at 22.8 kHz, 127 kHz, and 490 kHz.
    Kobayashi D; Honma C; Suzuki A; Takahashi T; Matsumoto H; Kuroda C; Otake K; Shono A
    Ultrason Sonochem; 2012 Jul; 19(4):745-9. PubMed ID: 22285681
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sonochemical reactions at 640 kHz using an efficient reactor. Oxidation of potassium iodide.
    Seymour JD; Wallace HC; Gupta RB
    Ultrason Sonochem; 1997 Oct; 4(4):289-93. PubMed ID: 11233810
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new development of dyestuffs degradation system using ultrasound.
    Inoue M; Okada F; Sakurai A; Sakakibara M
    Ultrason Sonochem; 2006 May; 13(4):313-20. PubMed ID: 16014336
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flow effects on phenol degradation and sonoluminescence at different ultrasonic frequencies.
    Wood RJ; Vévert C; Lee J; Bussemaker MJ
    Ultrason Sonochem; 2020 May; 63():104892. PubMed ID: 31945575
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxygen-induced concurrent ultrasonic degradation of volatile and non-volatile aromatic compounds.
    Pétrier C; Combet E; Mason T
    Ultrason Sonochem; 2007 Feb; 14(2):117-21. PubMed ID: 16837230
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physical and chemical effects of acoustic cavitation in selected ultrasonic cleaning applications.
    Yusof NS; Babgi B; Alghamdi Y; Aksu M; Madhavan J; Ashokkumar M
    Ultrason Sonochem; 2016 Mar; 29():568-76. PubMed ID: 26142078
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of particles on sonochemical reactions in aqueous solutions.
    Keck A; Gilbert E; Köster R
    Ultrasonics; 2002 May; 40(1-8):661-5. PubMed ID: 12160021
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intensification of degradation of aqueous solutions of rhodamine B using sonochemical reactors at operating capacity of 7 L.
    Mishra KP; Gogate PR
    J Environ Manage; 2011 Aug; 92(8):1972-7. PubMed ID: 21530069
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Degradation of phenol using a combination of ultrasonic and UV irradiations at pilot scale operation.
    Khokhawala IM; Gogate PR
    Ultrason Sonochem; 2010 Jun; 17(5):833-8. PubMed ID: 20308000
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetics analysis for development of a rate constant estimation model for ultrasonic degradation reaction of methylene blue.
    Kobayashi D; Honma C; Matsumoto H; Takahashi T; Kuroda C; Otake K; Shono A
    Ultrason Sonochem; 2014 Jul; 21(4):1489-95. PubMed ID: 24439912
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acoustic emission spectra and sonochemical activity in a 36 kHz sonoreactor.
    Son Y; Lim M; Khim J; Ashokkumar M
    Ultrason Sonochem; 2012 Jan; 19(1):16-21. PubMed ID: 21705256
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Realization of cavitation fields based on the acoustic resonance modes in an immersion-type sonochemical reactor.
    Wang YC; Yao MC
    Ultrason Sonochem; 2013 Jan; 20(1):565-70. PubMed ID: 22959558
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of acoustic and geometric effects on the sonoreactor performance.
    Rashwan SS; Dincer I; Mohany A
    Ultrason Sonochem; 2020 Nov; 68():105174. PubMed ID: 32505100
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.