BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 12551899)

  • 1. Palmitoylated peptides from the cysteine-rich domain of SNAP-23 cause membrane fusion depending on peptide length, position of cysteines, and extent of palmitoylation.
    Pallavi B; Nagaraj R
    J Biol Chem; 2003 Apr; 278(15):12737-44. PubMed ID: 12551899
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SNAP-23 and SNAP-25 are palmitoylated in vivo.
    Vogel K; Roche PA
    Biochem Biophys Res Commun; 1999 May; 258(2):407-10. PubMed ID: 10329400
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The SNARE proteins SNAP-25 and SNAP-23 display different affinities for lipid rafts in PC12 cells. Regulation by distinct cysteine-rich domains.
    Salaün C; Gould GW; Chamberlain LH
    J Biol Chem; 2005 Jan; 280(2):1236-40. PubMed ID: 15542596
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The SNAP-25 linker as an adaptation toward fast exocytosis.
    Nagy G; Milosevic I; Mohrmann R; Wiederhold K; Walter AM; Sørensen JB
    Mol Biol Cell; 2008 Sep; 19(9):3769-81. PubMed ID: 18579690
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Palmitoylation of the SNAP25 protein family: specificity and regulation by DHHC palmitoyl transferases.
    Greaves J; Gorleku OA; Salaun C; Chamberlain LH
    J Biol Chem; 2010 Aug; 285(32):24629-38. PubMed ID: 20519516
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The cysteine-rich domain of synaptosomal-associated protein of 23 kDa (SNAP-23) regulates its membrane association and regulated exocytosis from mast cells.
    Agarwal V; Naskar P; Agasti S; Khurana GK; Vishwakarma P; Lynn AM; Roche PA; Puri N
    Biochim Biophys Acta Mol Cell Res; 2019 Oct; 1866(10):1618-1633. PubMed ID: 31260699
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiple palmitoylation of synaptotagmin and the t-SNARE SNAP-25.
    Veit M; Söllner TH; Rothman JE
    FEBS Lett; 1996 Apr; 385(1-2):119-23. PubMed ID: 8641455
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fatty acids can substitute the HIV fusion peptide in lipid merging and fusion: an analogy between viral and palmitoylated eukaryotic fusion proteins.
    Lev N; Shai Y
    J Mol Biol; 2007 Nov; 374(1):220-30. PubMed ID: 17919659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of two isoforms of the vesicle-membrane fusion protein SNAP-23 in human neutrophils and HL-60 cells.
    Mollinedo F; Lazo PA
    Biochem Biophys Res Commun; 1997 Feb; 231(3):808-12. PubMed ID: 9070898
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cysteine residues of SNAP-25 are required for SNARE disassembly and exocytosis, but not for membrane targeting.
    Washbourne P; Cansino V; Mathews JR; Graham M; Burgoyne RD; Wilson MC
    Biochem J; 2001 Aug; 357(Pt 3):625-34. PubMed ID: 11463334
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic cycling of t-SNARE acylation regulates platelet exocytosis.
    Zhang J; Huang Y; Chen J; Zhu H; Whiteheart SW
    J Biol Chem; 2018 Mar; 293(10):3593-3606. PubMed ID: 29352103
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional characterization of palmitoylated and nonacylated SNAP-25 purified from insect cells infected with recombinant baculovirus.
    Kammer B; Schmidt MF; Veit M
    Mol Cell Neurosci; 2003 Jul; 23(3):333-40. PubMed ID: 12837618
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cholecystokinin-regulated exocytosis in rat pancreatic acinar cells is inhibited by a C-terminus truncated mutant of SNAP-23.
    Huang X; Sheu L; Tamori Y; Trimble WS; Gaisano HY
    Pancreas; 2001 Aug; 23(2):125-33. PubMed ID: 11484914
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SNAP-23 is a target for calpain cleavage in activated platelets.
    Rutledge TW; Whiteheart SW
    J Biol Chem; 2002 Oct; 277(40):37009-15. PubMed ID: 12121992
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of cysteine string protein (Csp) and mutant alpha-SNAP overexpression reveals a role for csp in late steps of membrane fusion in dense-core granule exocytosis in adrenal chromaffin cells.
    Graham ME; Burgoyne RD
    J Neurosci; 2000 Feb; 20(4):1281-9. PubMed ID: 10662817
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SNAP-23 participates in SNARE complex assembly in rat adipose cells.
    St-Denis JF; Cabaniols JP; Cushman SW; Roche PA
    Biochem J; 1999 Mar; 338 ( Pt 3)(Pt 3):709-15. PubMed ID: 10051443
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Homotetrameric structure of the SNAP-23 N-terminal coiled-coil domain.
    Freedman SJ; Song HK; Xu Y; Sun ZY; Eck MJ
    J Biol Chem; 2003 Apr; 278(15):13462-7. PubMed ID: 12556468
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of the palmitoylation domain of SNAP-25.
    Lane SR; Liu Y
    J Neurochem; 1997 Nov; 69(5):1864-9. PubMed ID: 9349529
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Function of the t-SNARE SNAP-23 and secretory carrier membrane proteins (SCAMPs) in exocytosis in mast cells.
    Castle JD; Guo Z; Liu L
    Mol Immunol; 2002 Sep; 38(16-18):1337-40. PubMed ID: 12217404
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Perturbation of a very late step of regulated exocytosis by a secretory carrier membrane protein (SCAMP2)-derived peptide.
    Guo Z; Liu L; Cafiso D; Castle D
    J Biol Chem; 2002 Sep; 277(38):35357-63. PubMed ID: 12124380
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.