BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 12551900)

  • 1. Sarcomere thin filament regulatory isoforms. Evidence of a dominant effect of slow skeletal troponin I on cardiac contraction.
    Metzger JM; Michele DE; Rust EM; Borton AR; Westfall MV
    J Biol Chem; 2003 Apr; 278(15):13118-23. PubMed ID: 12551900
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tension production and thin-filament protein isoforms in developing rat myocardium.
    Reiser PJ; Westfall MV; Schiaffino S; Solaro RJ
    Am J Physiol; 1994 Oct; 267(4 Pt 2):H1589-96. PubMed ID: 7943406
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A recombinant monocysteine mutant (Ser to Cys-155) of fast skeletal troponin T: identification by cross-linking of a domain involved in a physiologically relevant interaction with troponins C and I.
    Jha PK; Sarkar S
    Biochemistry; 1998 Sep; 37(35):12253-60. PubMed ID: 9724539
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential expression of TnI and TnT isoforms in rabbit heart during the perinatal period and during cardiovascular stress.
    Gao L; Kennedy JM; Solaro RJ
    J Mol Cell Cardiol; 1995 Jan; 27(1):541-50. PubMed ID: 7760375
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gene transfer of troponin I isoforms, mutants, and chimeras.
    Westfall MV; Metzger JM
    Adv Exp Med Biol; 2003; 538():169-74; discussion 174. PubMed ID: 15098664
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thin filament protein dynamics in fully differentiated adult cardiac myocytes: toward a model of sarcomere maintenance.
    Michele DE; Albayya FP; Metzger JM
    J Cell Biol; 1999 Jun; 145(7):1483-95. PubMed ID: 10385527
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of slow skeletal troponin I expression in the murine myocardium are influenced by development-related shifts in myosin heavy chain isoform.
    Ford SJ; Chandra M
    J Physiol; 2012 Dec; 590(23):6047-63. PubMed ID: 22966157
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Developmental changes in passive stiffness and myofilament Ca2+ sensitivity due to titin and troponin-I isoform switching are not critically triggered by birth.
    Krüger M; Kohl T; Linke WA
    Am J Physiol Heart Circ Physiol; 2006 Aug; 291(2):H496-506. PubMed ID: 16679402
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chimera analysis of troponin I domains that influence Ca(2+)-activated myofilament tension in adult cardiac myocytes.
    Westfall MV; Albayya FP; Turner II; Metzger JM
    Circ Res; 2000 Mar; 86(4):470-7. PubMed ID: 10700453
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Complex tropomyosin and troponin T isoform expression patterns in orbital and global fibers of adult dog and rat extraocular muscles.
    Bicer S; Reiser PJ
    J Muscle Res Cell Motil; 2013 Aug; 34(3-4):211-31. PubMed ID: 23700265
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of deletion mutants of troponins I and T: COOH-terminal truncation of troponin T abolishes troponin I binding and reduces Ca2+ sensitivity of the reconstituted regulatory system.
    Jha PK; Leavis PC; Sarkar S
    Biochemistry; 1996 Dec; 35(51):16573-80. PubMed ID: 8987992
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Myofibrillar troponin exists in three states and there is signal transduction along skeletal myofibrillar thin filaments.
    Swartz DR; Yang Z; Sen A; Tikunova SB; Davis JP
    J Mol Biol; 2006 Aug; 361(3):420-35. PubMed ID: 16857209
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Slow skeletal troponin I gene transfer, expression, and myofilament incorporation enhances adult cardiac myocyte contractile function.
    Westfall MV; Rust EM; Metzger JM
    Proc Natl Acad Sci U S A; 1997 May; 94(10):5444-9. PubMed ID: 9144257
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Troponin T modulates sarcomere length-dependent recruitment of cross-bridges in cardiac muscle.
    Chandra M; Tschirgi ML; Rajapakse I; Campbell KB
    Biophys J; 2006 Apr; 90(8):2867-76. PubMed ID: 16443664
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of a contractile deficit in adult cardiac myocytes expressing hypertrophic cardiomyopathy-associated mutant troponin T proteins.
    Rust EM; Albayya FP; Metzger JM
    J Clin Invest; 1999 May; 103(10):1459-67. PubMed ID: 10330428
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Equilibrium linkage analysis of cardiac thin filament assembly. Implications for the regulation of muscle contraction.
    Dahiya R; Butters CA; Tobacman LS
    J Biol Chem; 1994 Nov; 269(47):29457-61. PubMed ID: 7961927
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional analysis of troponin I regulatory domains in the intact myofilament of adult single cardiac myocytes.
    Westfall MV; Albayya FP; Metzger JM
    J Biol Chem; 1999 Aug; 274(32):22508-16. PubMed ID: 10428827
    [TBL] [Abstract][Full Text] [Related]  

  • 18. N-Terminal Hypervariable Region of Muscle Type Isoforms of Troponin T Differentially Modulates the Affinity of Tropomyosin-Binding Site 1.
    Amarasinghe C; Jin JP
    Biochemistry; 2015 Jun; 54(24):3822-30. PubMed ID: 26024675
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Troponin T: genetics, properties and function.
    Perry SV
    J Muscle Res Cell Motil; 1998 Aug; 19(6):575-602. PubMed ID: 9742444
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biology of the troponin complex in cardiac myocytes.
    Parmacek MS; Solaro RJ
    Prog Cardiovasc Dis; 2004; 47(3):159-76. PubMed ID: 15736582
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.