These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 1255192)

  • 1. Changes in acyl group composition of diacyl-glycerophosphorylethanolamine, alkenylacyl-glycerophosphorylethanolamine and diacyl-glycerophosphorylcholine in myelin and microsomal fractions of mouse brain during development.
    Sun GY; Yau TM
    J Neurochem; 1976 Feb; 26(2):291-5. PubMed ID: 1255192
    [No Abstract]   [Full Text] [Related]  

  • 2. Essential fatty acid deficiency: metabolism of 20:3(n-9) and 22:3(n-9) of major phosphoglycerides in subcellular fractions of developing and mature mouse brain.
    Winniczek H; Go J; Sheng SL
    Lipids; 1975 Jul; 10(7):365-73. PubMed ID: 1143024
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Induction of essential fatty acid deficiency in mouse brain: effects of fat deficient diet upon acyl group composition of myelin and synaptosome-rich fractions during development and maturation.
    Sun GY; Go J; Sun AY
    Lipids; 1974 Jul; 9(7):450-4. PubMed ID: 4407652
    [No Abstract]   [Full Text] [Related]  

  • 4. Metabolism of glycerophospholipids of myelin and microsomes in rat brain. Reutilization of precursors.
    Miller SL; Benjamins JA; Morell P
    J Biol Chem; 1977 Jun; 252(12):4025-37. PubMed ID: 863916
    [No Abstract]   [Full Text] [Related]  

  • 5. Effects of a fatty acid deficiency on lipids of whole brain, microsomes, and myelin in the rat.
    Sun GY
    J Lipid Res; 1972 Jan; 13(1):56-62. PubMed ID: 5059199
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in the composition of fatty chains of diacyl, alkylacyl and alkenylacyl ethanolamine and choline phosphoglycerides during the development of chick heart ventricular cells. High accumulation of 22-carbon fatty acid in ether phospholipids.
    Nakagawa Y; Waku K; Ishima Y
    Biochim Biophys Acta; 1982 Sep; 712(3):667-76. PubMed ID: 7126631
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Age differences in the acyl group composition of phosphoglycerides in myelin isolated from the brain of the rhesus monkey.
    Sun GY; Samorajski T
    Biochim Biophys Acta; 1973 Jul; 316(1):19-27. PubMed ID: 4352921
    [No Abstract]   [Full Text] [Related]  

  • 8. Metabolism of the ethanolamine phosphoglycerides of mouse brain myelin and microsomes.
    Horrocks LA
    J Neurochem; 1969 Jan; 16(1):13-8. PubMed ID: 5776609
    [No Abstract]   [Full Text] [Related]  

  • 9. Turnover of phosphatidylcholine in microsomes and myelin in brains of young and adult rats.
    Miller SL; Morell P
    J Neurochem; 1978 Oct; 31(4):771-7. PubMed ID: 702145
    [No Abstract]   [Full Text] [Related]  

  • 10. Lipid and fatty acid composition of myelin purified from normal and MS brains.
    Woelk H; Borri P
    Eur Neurol; 1973; 10(4):250-60. PubMed ID: 4778382
    [No Abstract]   [Full Text] [Related]  

  • 11. Individual molecular species of phosphatidylcholine and phosphatidylethanolamine in myelin turn over at different rates.
    Ousley AH; Morell P
    J Biol Chem; 1992 May; 267(15):10362-9. PubMed ID: 1587822
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biosynthesis of N-acylethanolamine phospholipids by dog brain preparations.
    Natarajan V; Schmid PC; Reddy PV; Zuzarte-Augustin ML; Schmid HH
    J Neurochem; 1983 Nov; 41(5):1303-12. PubMed ID: 6619867
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The phosphorus turnover of phosphatidylcholine, plasmalogen and diacyl phosphatidylethanolamines of the brain of rats of different ages, in various areas and some microstructures of the brain.
    Ivanova TN; Rubel LN; Semenova NA
    J Neurochem; 1967 Jun; 14(6):653-9. PubMed ID: 6025098
    [No Abstract]   [Full Text] [Related]  

  • 14. Metabolism of palmitic acid in the subcellular fractions of mouse brain.
    Sun GY; Horrocks LA
    J Lipid Res; 1973 Mar; 14(2):206-14. PubMed ID: 4698268
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The accumulation of arachidonate and docosahexaenoate in the developing rat brain.
    Sinclair AJ; Crawford MA
    J Neurochem; 1972 Jul; 19(7):1753-8. PubMed ID: 5042472
    [No Abstract]   [Full Text] [Related]  

  • 16. Phosphoglycerides and their acyl group composition in myelin and microsomes of rat spinal cord during development.
    Sun GY; deSousa BN; Danopoulos V; Horrocks LA
    Int J Dev Neurosci; 1983; 1(1):59-64. PubMed ID: 24875607
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lignoceric acid biosynthesis in the developing brain. Activities of mitochondrial acetyl-CoA-dependent synthesis and microsomal malonyl-CoA chain-elongating system in relation to myelination. Comparison between normal mouse and dysmyelinating mutants (quaking and jimpy).
    Bourre JM; Paturneau-Jouas MY; Daudu OL; Baumann NA
    Eur J Biochem; 1977 Jan; 72(1):41-7. PubMed ID: 836393
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of postdecapitative ischemia and hypoxia on the phosphoglyceride acyl groups of rat brain membranes.
    Sun GY; Manning R; Strosznajder J
    Neurochem Res; 1980 Nov; 5(11):1211-9. PubMed ID: 7464984
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective acyl transfer in the reacylation of brain glycerophospholipids. Comparison of three acylation systems for 1-alk-1'-enylglycero-3-phosphoethanolamine, 1-acylglycero-3-phosphoethanolamine and 1-acylglycero-3-phosphocholine in rat brain microsomes.
    Masuzawa Y; Sugiura T; Sprecher H; Waku K
    Biochim Biophys Acta; 1989 Sep; 1005(1):1-12. PubMed ID: 2673414
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolism of arachidonate and stearate injected simultaneously into the mouse brain.
    Sun GY
    Lipids; 1977 Aug; 12(8):661-5. PubMed ID: 895416
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.