BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 12552145)

  • 1. Endogenous alpha-ketol linolenic acid levels in short day-induced cotyledons are closely related to flower induction in Pharbitis nil.
    Suzuki M; Yamaguchi S; Iida T; Hashimoto I; Teranishi H; Mizoguchi M; Yano F; Todoroki Y; Watanabe N; Yokoyama M
    Plant Cell Physiol; 2003 Jan; 44(1):35-43. PubMed ID: 12552145
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ethylene and ABA interactions in the regulation of flower induction in Pharbitis nil.
    Wilmowicz E; Kesy J; Kopcewicz J
    J Plant Physiol; 2008 Dec; 165(18):1917-28. PubMed ID: 18565620
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The involvement of cyclic GMP in the photoperiodic flower induction of Pharbitis nil.
    Szmidt-Jaworska A; Jaworski K; Tretyn A; Kopcewicz J
    J Plant Physiol; 2004 Mar; 161(3):277-84. PubMed ID: 15077626
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interactions among LOX metabolites regulate temperature-mediated flower bud formation in morning glory (Pharbitis nil).
    Nam KH; Yoshihara T
    J Plant Physiol; 2012 Dec; 169(18):1815-20. PubMed ID: 22902207
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Involvement of cyclic GMP in phytochrome-controlled flowering of Pharbitis nil.
    Szmidt-Jaworska A; Jaworski K; Kopcewicz J
    J Plant Physiol; 2008 May; 165(8):858-67. PubMed ID: 17913286
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibitory role of gibberellins in theobroxide-induced flowering of Pharbitis nil.
    Gao X; Kong F; Wang F; Matsuura H; Yoshihara T
    J Plant Physiol; 2006 Mar; 163(4):398-404. PubMed ID: 16455353
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in catecholamine levels in short day-induced cotyledons of Pharbitis nil.
    Suzuki M; Mizoguchi M; Yano F; Hara U; Yokoyama M; Watanabe N
    Z Naturforsch C J Biosci; 2003; 58(3-4):220-4. PubMed ID: 12710732
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dark and Circadian Regulation of mRNA Accumulation in the Short-Day Plant Pharbitis nil.
    O'Neill SD; Zhang XS; Zheng CC
    Plant Physiol; 1994 Feb; 104(2):569-580. PubMed ID: 12232107
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of a component that induces flowering of Lemna among the reaction products of alpha-ketol linolenic acid (FIF) and norepinephrine.
    Yamaguchi S; Yokoyama M; Iida T; Okai M; Tanaka O; Takimoto A
    Plant Cell Physiol; 2001 Nov; 42(11):1201-9. PubMed ID: 11726704
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reduction in the critical dark length for flower induction during aging in the short-day plant Pharbitis nil var. Kidachi.
    Hasegawa H; Yamada M; Iwase Y; Wada KC; Takeno K
    Sex Plant Reprod; 2010 Dec; 23(4):291-300. PubMed ID: 20309586
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Light- and IAA-regulated ACC synthase gene (PnACS) from Pharbitis nil and its possible role in IAA-mediated flower inhibition.
    Frankowski K; Kesy J; Wojciechowski W; Kopcewicz J
    J Plant Physiol; 2009 Jan; 166(2):192-202. PubMed ID: 18541335
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biochemical evidence for a calcium-dependent protein kinase from Pharbitis nil and its involvement in photoperiodic flower induction.
    Jaworski K; Szmidt-Jaworska A; Tretyn A; Kopcewicz J
    Phytochemistry; 2003 Apr; 62(7):1047-55. PubMed ID: 12591257
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stress-induced factor involved in flower formation of Lemna is an alpha-ketol derivative of linolenic acid.
    Yokoyama M; Yamaguchi S; Inomata S; Komatsu K; Yoshida S; Iida T; Yokokawa Y; Yamaguchi M; Kaihara S; Takimoto A
    Plant Cell Physiol; 2000 Jan; 41(1):110-3. PubMed ID: 10750715
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accumulation of a clock-regulated transcript during flower-inductive darkness in pharbitis nil.
    Sage-Ono K; Ono M; Harada H; Kamada H
    Plant Physiol; 1998 Apr; 116(4):1479-85. PubMed ID: 9536066
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Constitutive expression of the GIGANTEA ortholog affects circadian rhythms and suppresses one-shot induction of flowering in Pharbitis nil, a typical short-day plant.
    Higuchi Y; Sage-Ono K; Sasaki R; Ohtsuki N; Hoshino A; Iida S; Kamada H; Ono M
    Plant Cell Physiol; 2011 Apr; 52(4):638-50. PubMed ID: 21382978
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation of a gene, PnFL-1, expressed in Pharbitis cotyledons during floral induction.
    Kim KC; Hur Y; Maeng J
    Mol Cells; 2003 Aug; 16(1):54-9. PubMed ID: 14503845
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of stem growth and flower formation in Pharbitis nil with N, N-dimethylaminosuccinamic acid (B 995).
    Zeevaart JA
    Planta; 1966 Mar; 71(1):68-80. PubMed ID: 24553989
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transient increase in the level of mRNA for a germin-like protein in leaves of the short-day plant Pharbitis nil during the photoperiodic induction of flowering.
    Ono M; Sage-Ono K; Inoue M; Kamada H; Harada H
    Plant Cell Physiol; 1996 Sep; 37(6):855-61. PubMed ID: 8888623
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Induction of flowering by 5-azacytidine in some plant species: relationship between the stability of photoperiodically induced flowering and flower-inducing effect of DNA demethylation.
    Kondo H; Miura T; Wada KC; Takeno K
    Physiol Plant; 2007 Nov; 131(3):462-9. PubMed ID: 18251884
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Developing a platform for production of the oxylipin KODA in plants.
    Ihara Y; Wakamatsu T; Yokoyama M; Maezawa D; Ohta H; Shimojima M
    J Exp Bot; 2022 May; 73(9):3044-3052. PubMed ID: 35560188
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.