These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 1255231)

  • 1. Fast and slow pyramidal tract neurons: an intracellular analysis of their contrasting repetitive firing properties in the cat.
    Calvin WH; Sypert GW
    J Neurophysiol; 1976 Mar; 39(2):420-34. PubMed ID: 1255231
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Slowly-Conducting Pyramidal Tract Neurons in Macaque and Rat.
    Kraskov A; Soteropoulos DS; Glover IS; Lemon RN; Baker SN
    Cereb Cortex; 2020 May; 30(5):3403-3418. PubMed ID: 32026928
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrophysiological characterization of different types of neurons recorded in vivo in the motor cortex of the cat. I. Patterns of firing activity and synaptic responses.
    Baranyi A; Szente MB; Woody CD
    J Neurophysiol; 1993 Jun; 69(6):1850-64. PubMed ID: 8350126
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distribution of synapses on fast and slow pyramidal tract neurons in the cat. An electron microscopic study.
    Liu XB; Zheng ZH; Xi MC; Wu CP
    Brain Res; 1991 Apr; 545(1-2):239-47. PubMed ID: 1860048
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synaptic organization of the cerebello-thalamo-cerebral pathway in the cat. III. Cerebellar input to corticofugal neurons destined for different subcortical nuclei in areas 4 and 6.
    Futami T; Kano M; Sento S; Shinoda Y
    Neurosci Res; 1986 May; 3(4):321-44. PubMed ID: 3725222
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Repetitive firing in layer V neurons from cat neocortex in vitro.
    Stafstrom CE; Schwindt PC; Crill WE
    J Neurophysiol; 1984 Aug; 52(2):264-77. PubMed ID: 6481432
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Passive membrane properties, afterpotentials and repetitive firing of superior colliculus neurons studied in the anesthetized cat.
    Grantyn R; Grantyn A; Schierwagen A
    Exp Brain Res; 1983; 50(2-3):377-91. PubMed ID: 6641872
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensorimotor cortical influences on cuneate nucleus rhythmic activity in the anesthetized cat.
    Marino J; Canedo A; Aguilar J
    Neuroscience; 2000; 95(3):657-73. PubMed ID: 10670434
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Morphology of pyramidal neurones in monkey motor cortex and the synaptic actions of their intracortical axon collaterals.
    Ghosh S; Porter R
    J Physiol; 1988 Jun; 400():593-615. PubMed ID: 3418537
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in the axonal conduction velocity of pyramidal tract neurons in the aged cat.
    Xi MC; Liu RH; Engelhardt JK; Morales FR; Chase MH
    Neuroscience; 1999; 92(1):219-25. PubMed ID: 10392844
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Excitatory synaptic actions between pairs of neighboring pyramidal tract cells in the motor cortex.
    Kang Y; Endo K; Araki T
    J Neurophysiol; 1988 Feb; 59(2):636-47. PubMed ID: 3351578
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Corticoreticular pathways in the cat. I. Projection patterns and collaterization.
    Kably B; Drew T
    J Neurophysiol; 1998 Jul; 80(1):389-405. PubMed ID: 9658059
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Local application of dopamine inhibits pyramidal tract neuron activity in the rodent motor cortex.
    Awenowicz PW; Porter LL
    J Neurophysiol; 2002 Dec; 88(6):3439-51. PubMed ID: 12466459
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The intraspinal branching patterns of fast and slow pyramidal tract neurons in the cat.
    Shinoda Y; Yamaguchi T
    J Physiol (Paris); 1978; 74(3):237-8. PubMed ID: 722599
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relationship between repetitive firing and afterhyperpolarizations in human neocortical neurons.
    Lorenzon NM; Foehring RC
    J Neurophysiol; 1992 Feb; 67(2):350-63. PubMed ID: 1373765
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A reanalysis of the ventrolateral input in slow and fast pyramidal tract neurons of the cat motor cortex.
    DeschĂȘnes M; Landry P; Clercq M
    Neuroscience; 1982; 7(9):2149-57. PubMed ID: 6292778
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Large identified pyramidal cells in macaque motor and premotor cortex exhibit "thin spikes": implications for cell type classification.
    Vigneswaran G; Kraskov A; Lemon RN
    J Neurosci; 2011 Oct; 31(40):14235-42. PubMed ID: 21976508
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Role of the ventrolateral part of the medulla oblongata in the control of gonadotropin secretion. I. Electrophysiological studies on the neural features between the limbic-preoptic structures and the ventrolateral part of the medulla oblongata in the female rat].
    Ohno S
    Nihon Naibunpi Gakkai Zasshi; 1983 Jul; 59(7):1022-38. PubMed ID: 6313439
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Morphological features of layer V pyramidal neurons in the cat parietal cortex: an intracellular HRP study.
    Yamamoto T; Samejima A; Oka H
    J Comp Neurol; 1987 Nov; 265(3):380-90. PubMed ID: 3693611
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Post-spike distance-to-threshold trajectories of neurones in monkey motor cortex.
    Wetmore DZ; Baker SN
    J Physiol; 2004 Mar; 555(Pt 3):831-50. PubMed ID: 14724199
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.