These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 1255233)

  • 1. Possible mechanisms for observed pathophysiological variability in experimental spinal cord injury by the method of Allen.
    Koozekanani SH; Vise WM; Hashemi RM; McGhee RB
    J Neurosurg; 1976 Apr; 44(4):429-34. PubMed ID: 1255233
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of impounder contact area on experimental spinal cord injury.
    Gerber AM; Corrie WS
    J Neurosurg; 1979 Oct; 51(4):539-42. PubMed ID: 479936
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Spinal cord evoked potential in experimental spinal cord injury: the changes of spinal cord evoked potential following impact injury, and the correlation between the change in amplitude of the spinal cord evoked potential after injury and the prognosis for motor recovery of legs].
    Isu T; Iwasaki Y; Akino M; Abe H
    No Shinkei Geka; 1989 Jul; 17(7):629-34. PubMed ID: 2812263
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Spinal cord evoked potential in experimental spinal cord injury--the changes in spinal cord evoked potential following impact injury, and effect of mannitol administration on acute experimental spinal cord injury].
    Isu T
    Hokkaido Igaku Zasshi; 1990 Mar; 65(2):142-51. PubMed ID: 2114347
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Clinical application of the evoked spinal cord potentials. Part 1. Neurophysiological assessment of the evoked spinal cord potentials in experimental cord trauma - with reference to cord compression and ischemia (author's transl)].
    Sudo N
    Nihon Seikeigeka Gakkai Zasshi; 1980 Dec; 54(12):1631-47. PubMed ID: 7288222
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spinal cord monitoring of experimental incomplete cervical spinal cord injury: a preliminary report.
    Bohlman HH; Bahniuk E; Field G; Raskulinecz G
    Spine (Phila Pa 1976); 1981; 6(5):428-36. PubMed ID: 7302676
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of bone fragment impact velocity on biomechanical parameters related to spinal cord injury: a finite element study.
    Khuyagbaatar B; Kim K; Hyuk Kim Y
    J Biomech; 2014 Aug; 47(11):2820-5. PubMed ID: 24891036
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Finite element analysis of spinal cord injury in the rat.
    Maikos JT; Qian Z; Metaxas D; Shreiber DI
    J Neurotrauma; 2008 Jul; 25(7):795-816. PubMed ID: 18627257
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study of spinal cord evoked injury potential by use of computer modeling and in dogs with naturally acquired thoracolumbar spinal cord compression.
    Poncelet L; Michaux C; Balligand M
    Am J Vet Res; 1998 Mar; 59(3):300-6. PubMed ID: 9522949
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Effect of mannitol administration and myelotomy on acute experimental spinal cord injury: investigation by spinal cord evoked potential].
    Isu T; Iwasaki Y; Akino M; Abe H
    No Shinkei Geka; 1990 Mar; 18(3):267-72. PubMed ID: 2113634
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical factors in experimental spinal cord injury.
    Blight A
    J Am Paraplegia Soc; 1988; 11(2):26-34. PubMed ID: 3076595
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neurological recovery is impaired by concurrent but not by asymptomatic pre-existing spinal cord compression after traumatic spinal cord injury.
    Kubota K; Saiwai H; Kumamaru H; Kobayakawa K; Maeda T; Matsumoto Y; Harimaya K; Iwamoto Y; Okada S
    Spine (Phila Pa 1976); 2012 Aug; 37(17):1448-55. PubMed ID: 22414995
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clip compression model is useful for thoracic spinal cord injuries: histologic and functional correlates.
    Poon PC; Gupta D; Shoichet MS; Tator CH
    Spine (Phila Pa 1976); 2007 Dec; 32(25):2853-9. PubMed ID: 18246008
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spinal cord intramedullary pressure: direct cord traction test.
    Iida H; Tachibana S
    Neurol Med Chir (Tokyo); 1995 Feb; 35(2):75-7. PubMed ID: 7753311
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Instrumented artificial spinal cord for human cervical pressure measurement.
    Pintar FA; Schlick MB; Yoganandan N; Maiman DJ
    Biomed Mater Eng; 1996; 6(3):219-29. PubMed ID: 8922266
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental models for spinal cord injury research: physical and physiological considerations.
    Anderson TE; Stokes BT
    J Neurotrauma; 1992 Mar; 9 Suppl 1():S135-42. PubMed ID: 1588604
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of duration of acute spinal cord compression in a new acute cord injury model in the rat.
    Rivlin AS; Tator CH
    Surg Neurol; 1978 Jul; 10(1):38-43. PubMed ID: 684604
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prostaglandin E1 analog increases spinal cord blood flow at the point of compression during and after experimental spinal cord injury.
    Hamamoto Y; Ogata T; Morino T; Hino M; Yamamoto H
    Spinal Cord; 2010 Feb; 48(2):149-53. PubMed ID: 19687798
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical and neurological response of cat spinal cord under static loading.
    Hung TK; Lin HS; Bunegin L; Albin MS
    Surg Neurol; 1982 Mar; 17(3):213-7. PubMed ID: 7079940
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact and balloon compression models of the spinal cord.
    Hitchon PW; Lobosky JM; Wilkinson TT; Dyste GN; Girton RA
    J Am Paraplegia Soc; 1988; 11(2):35-40. PubMed ID: 3076596
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.