BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 12552612)

  • 1. Model-based biological Raman spectral imaging.
    Shafer-Peltier KE; Haka AS; Motz JT; Fitzmaurice M; Dasari RR; Feld MS
    J Cell Biochem Suppl; 2002; 39():125-37. PubMed ID: 12552612
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fuzzy clustering of Raman spectral imaging data with a wavelet-based noise-reduction approach.
    Wang YP; Wang Y; Spencer P
    Appl Spectrosc; 2006 Jul; 60(7):826-32. PubMed ID: 16854273
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An in-depth analysis of Raman and near-infrared chemical images of common pharmaceutical tablets.
    Sasić S
    Appl Spectrosc; 2007 Mar; 61(3):239-50. PubMed ID: 17389063
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Study of human tumor tissues by Raman imaging spectra].
    Yu G; Zhang P; Tan EZ; Zhang CZ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2007 Feb; 27(2):295-8. PubMed ID: 17514959
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Raman spectral imaging of single living cancer cells: a preliminary study.
    Draux F; Jeannesson P; Beljebbar A; Tfayli A; Fourre N; Manfait M; Sulé-Suso J; Sockalingum GD
    Analyst; 2009 Mar; 134(3):542-8. PubMed ID: 19238292
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Defining a strategy for chemical imaging of industrial pharmaceutical samples on Raman line-mapping and global illumination instruments.
    Sasić S; Clark DA
    Appl Spectrosc; 2006 May; 60(5):494-502. PubMed ID: 16756700
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Separation of CARS image contributions with a Gaussian mixture model.
    Vogler N; Bocklitz T; Mariani M; Deckert V; Markova A; Schelkens P; Rösch P; Akimov D; Dietzek B; Popp J
    J Opt Soc Am A Opt Image Sci Vis; 2010 Jun; 27(6):1361-71. PubMed ID: 20508705
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analyzing Raman maps of pharmaceutical products by sample-sample two-dimensional correlation.
    Sasić S; Clark DA; Mitchell JC; Snowden MJ
    Appl Spectrosc; 2005 May; 59(5):630-8. PubMed ID: 15969808
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Disentangling dynamic changes of multiple cellular components during the yeast cell cycle by in vivo multivariate Raman imaging.
    Huang CK; Ando M; Hamaguchi HO; Shigeto S
    Anal Chem; 2012 Jul; 84(13):5661-8. PubMed ID: 22686107
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancement of infrared spectral images for maximizing chemical information by minimizing baseline interferences.
    Bu D; Huffman SW; Seelenbinder JA; Brown CW
    Appl Spectrosc; 2005 May; 59(5):575-83. PubMed ID: 15969802
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Variability in Raman spectra of single human tumor cells cultured in vitro: correlation with cell cycle and culture confluency.
    Matthews Q; Jirasek A; Lum J; Duan X; Brolo AG
    Appl Spectrosc; 2010 Aug; 64(8):871-87. PubMed ID: 20719050
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Confocal Raman microspectral imaging (CRMI) of murine stem cell colonies.
    Zuser E; Chernenko T; Newmark J; Miljković M; Diem M
    Analyst; 2010 Dec; 135(12):3030-3. PubMed ID: 20944846
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How to pre-process Raman spectra for reliable and stable models?
    Bocklitz T; Walter A; Hartmann K; Rösch P; Popp J
    Anal Chim Acta; 2011 Oct; 704(1-2):47-56. PubMed ID: 21907020
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Label-free imaging of human cells: algorithms for image reconstruction of Raman hyperspectral datasets.
    Miljković M; Chernenko T; Romeo MJ; Bird B; Matthäus C; Diem M
    Analyst; 2010 Aug; 135(8):2002-13. PubMed ID: 20526496
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Label-free biochemical imaging of heart tissue with high-speed spontaneous Raman microscopy.
    Ogawa M; Harada Y; Yamaoka Y; Fujita K; Yaku H; Takamatsu T
    Biochem Biophys Res Commun; 2009 May; 382(2):370-4. PubMed ID: 19285035
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Digital dewaxing of Raman signals: discrimination between nevi and melanoma spectra obtained from paraffin-embedded skin biopsies.
    Tfayli A; Gobinet C; Vrabie V; Huez R; Manfait M; Piot O
    Appl Spectrosc; 2009 May; 63(5):564-70. PubMed ID: 19470215
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monitoring the formation and decay of transient photosensitized intermediates using pump-probe UV resonance Raman spectroscopy. II: Kinetic modeling and multidimensional least-squares analysis.
    Kleimeyer JA; Harris JM
    Appl Spectrosc; 2003 Apr; 57(4):448-53. PubMed ID: 14658642
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo optical monitoring of tissue pathologies and diseases with vibrational contrast.
    Bégin S; Bélanger E; Laffray S; Vallée R; Côté D
    J Biophotonics; 2009 Nov; 2(11):632-42. PubMed ID: 19847801
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spectral mapping tools from the earth sciences applied to spectral microscopy data.
    Harris AT
    Cytometry A; 2006 Aug; 69(8):872-9. PubMed ID: 16969808
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Iterative kernel principal component analysis for image modeling.
    Kim KI; Franz MO; Schölkopf B
    IEEE Trans Pattern Anal Mach Intell; 2005 Sep; 27(9):1351-66. PubMed ID: 16173181
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.