These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 12552726)
1. [Effects of human thorax tissues on conduction of electrocardiogram and body surface potential]. He W; Wu Q; Liu L; Yang H; Liu H Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 1999 Dec; 16(4):471-6. PubMed ID: 12552726 [TBL] [Abstract][Full Text] [Related]
2. Solving the ECG forward problem by means of a meshless finite element method. Li ZS; Zhu SA; He B Phys Med Biol; 2007 Jul; 52(13):N287-96. PubMed ID: 17664567 [TBL] [Abstract][Full Text] [Related]
3. The effects of inhomogeneities and anisotropies on electrocardiographic fields: a 3-D finite-element study. Klepfer RN; Johnson CR; Macleod RS IEEE Trans Biomed Eng; 1997 Aug; 44(8):706-19. PubMed ID: 9254984 [TBL] [Abstract][Full Text] [Related]
4. Solving the ECG forward problem by means of standard h- and h-hierarchical adaptive linear boundary element method: comparison with two refinement schemes. Shou G; Xia L; Jiang M; Wei Q; Liu F; Crozier S IEEE Trans Biomed Eng; 2009 May; 56(5):1454-64. PubMed ID: 19272882 [TBL] [Abstract][Full Text] [Related]
5. The transfer matrix for epicardial potential in a piece-wise homogeneous thorax model: the boundary element formulation. Stenroos M Phys Med Biol; 2009 Sep; 54(18):5443-55. PubMed ID: 19700818 [TBL] [Abstract][Full Text] [Related]
6. Accuracy of a single equivalent moving dipole model in a realistic anatomic geometry torso model. Fukuoka Y; Armoundas AA; Oostendorp TF; Cohen RJ Comput Cardiol; 2000; 27():439-42. PubMed ID: 14632014 [TBL] [Abstract][Full Text] [Related]
7. Estimating the measuring sensitivity of unipolar and bipolar ECG with lead field method and FDM models. Puurtinen M; Viik J; Takano N; Malmivuo J; Hyttinen J Comput Methods Programs Biomed; 2009 May; 94(2):161-7. PubMed ID: 19185947 [TBL] [Abstract][Full Text] [Related]
8. The effect of torso impedance on epicardial and body surface potentials: a modeling study. Buist ML; Pullan AJ IEEE Trans Biomed Eng; 2003 Jul; 50(7):816-24. PubMed ID: 12848349 [TBL] [Abstract][Full Text] [Related]
9. Application of stochastic finite element methods to study the sensitivity of ECG forward modeling to organ conductivity. Geneser SE; Kirby RM; MacLeod RS IEEE Trans Biomed Eng; 2008 Jan; 55(1):31-40. PubMed ID: 18232344 [TBL] [Abstract][Full Text] [Related]
10. Truncated total least squares: a new regularization method for the solution of ECG inverse problems. Shou G; Xia L; Jiang M; Wei Q; Liu F; Crozier S IEEE Trans Biomed Eng; 2008 Apr; 55(4):1327-35. PubMed ID: 18390323 [TBL] [Abstract][Full Text] [Related]
11. One heart, two bodies: a simulation study of body surface potential differences between donor and recipient of heart transplantation. Theofilogiannakos EK; Theofilogiannakos GK; Anogeianaki A; Yioultsis TV; Danias PG; Stergiou-Michailidou V; Kallaras K; Xenos T; Anogianakis G Stud Health Technol Inform; 2009; 142():389-91. PubMed ID: 19377190 [TBL] [Abstract][Full Text] [Related]
12. Applicability of the single equivalent moving dipole model in an infinite homogeneous medium to identify cardiac electrical sources: a computer simulation study in a realistic anatomic geometry torso model. Fukuoka Y; Oostendorp TF; Sherman DA; Armoundas AA IEEE Trans Biomed Eng; 2006 Dec; 53(12 Pt 1):2436-44. PubMed ID: 17153200 [TBL] [Abstract][Full Text] [Related]
13. Effect of cardiac motion on body surface electrocardiographic potentials: an MRI-based simulation study. Wei Q; Liu F; Appleton B; Xia L; Liu N; Wilson S; Riley R; Strugnel W; Slaughter R; Denman R; Crozier S Phys Med Biol; 2006 Jul; 51(14):3405-18. PubMed ID: 16825739 [TBL] [Abstract][Full Text] [Related]
14. [Simulation of inverse recovery of epicardial potentials under incomplete boundary conditions]. Huang S; He W; Yao D Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2004 Aug; 21(4):527-30. PubMed ID: 15357424 [TBL] [Abstract][Full Text] [Related]
15. [EM algorithm for the inverse problem of electrocardiography]. Gao F; Liu H Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Aug; 25(4):795-800. PubMed ID: 18788282 [TBL] [Abstract][Full Text] [Related]
16. Improved performance of bayesian solutions for inverse electrocardiography using multiple information sources. Serinagaoglu Y; Brooks DH; MacLeod RS IEEE Trans Biomed Eng; 2006 Oct; 53(10):2024-34. PubMed ID: 17019867 [TBL] [Abstract][Full Text] [Related]
17. Modeling biologic soft tissues for haptic feedback with an hybrid multiresolution method. Frisoli A; Borelli L; Bergamasco M Stud Health Technol Inform; 2005; 111():145-8. PubMed ID: 15718716 [TBL] [Abstract][Full Text] [Related]
18. Elliptic cylinder geometry for distinguishability analysis in impedance tomography. Saka B; Yilmaz A IEEE Trans Biomed Eng; 2004 Jan; 51(1):126-32. PubMed ID: 14723501 [TBL] [Abstract][Full Text] [Related]
19. Boundary element computations in the forward and inverse problems of electrocardiography: comparison of collocation and Galerkin weightings. Stenroos M; Haueisen J IEEE Trans Biomed Eng; 2008 Sep; 55(9):2124-33. PubMed ID: 18713681 [TBL] [Abstract][Full Text] [Related]
20. Volume conductor effects involved in the genesis of the P wave. van Dam PM; van Oosterom A Europace; 2005 Sep; 7 Suppl 2():30-8. PubMed ID: 16102501 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]