BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 12552735)

  • 1. [Applications of porous polymeric materials and its biocompatibility].
    Gao C; Li A; Yi X; Feng L
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 1999 Dec; 16(4):511-5. PubMed ID: 12552735
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biocompatibility and safety evaluation of a ricinoleic acid-based poly(ester-anhydride) copolymer after implantation in rats.
    Vaisman B; Motiei M; Nyska A; Domb AJ
    J Biomed Mater Res A; 2010 Feb; 92(2):419-31. PubMed ID: 19191319
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toxicology and biocompatibility considerations in the evaluation of polymeric materials for biomedical applications.
    Laurencin CT; Pierre-Jacques HM; Langer R
    Clin Lab Med; 1990 Sep; 10(3):549-70. PubMed ID: 2253450
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biocompatibility testing of polymers: in vivo implantation studies.
    Gourlay SJ; Rice RM; Hegyeli AF; Wade CW; Dillon JG; Jaffe H; Kulkarni RK
    J Biomed Mater Res; 1978 Mar; 12(2):219-32. PubMed ID: 649628
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polymer nano-engineering for biomedical applications.
    Lee LJ
    Ann Biomed Eng; 2006 Jan; 34(1):75-88. PubMed ID: 16541328
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective laser sintering of biocompatible polymers for applications in tissue engineering.
    Tan KH; Chua CK; Leong KF; Cheah CM; Gui WS; Tan WS; Wiria FE
    Biomed Mater Eng; 2005; 15(1-2):113-24. PubMed ID: 15623935
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cytotoxicity and thermomechanical behavior of biomedical shape-memory polymer networks post-sterilization.
    Yakacki CM; Lyons MB; Rech B; Gall K; Shandas R
    Biomed Mater; 2008 Mar; 3(1):015010. PubMed ID: 18458497
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cell cultures in the biocompatibility study of synthetic materials.
    Cascone MG; Tricoli M; Cerrai P; Sbarbati Del Guerra R
    Cytotechnology; 1993; 11 Suppl 1():S137-9. PubMed ID: 7763743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Research progresses on electroactive and electrically conductive polymers for tissue engineering scaffolds].
    Li MY; Bidez P; Guterman-Tretter E; Guo Y; MacDiarmid AG; Lelkes PI; Yuan XB; Yuan XY; Sheng J; Li H; Song CX; Yen W
    Zhongguo Yi Xue Ke Xue Yuan Xue Bao; 2006 Dec; 28(6):845-8. PubMed ID: 17260480
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tissue engineering scaffolds for the regeneration of craniofacial bone.
    Chan WD; Perinpanayagam H; Goldberg HA; Hunter GK; Dixon SJ; Santos GC; Rizkalla AS
    J Can Dent Assoc; 2009 Jun; 75(5):373-7. PubMed ID: 19531334
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro biocompatibility studies of antibacterial quaternary polymers.
    Stratton TR; Rickus JL; Youngblood JP
    Biomacromolecules; 2009 Sep; 10(9):2550-5. PubMed ID: 19708685
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tailoring established polymers for medical applications.
    Neffe AT; Lendlein A
    Med Device Technol; 2007 Oct; 18(6):14-6, 18-9. PubMed ID: 18078176
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adhesion between biodegradable polymers and hydroxyapatite: Relevance to synthetic bone-like materials and tissue engineering scaffolds.
    Neuendorf RE; Saiz E; Tomsia AP; Ritchie RO
    Acta Biomater; 2008 Sep; 4(5):1288-96. PubMed ID: 18485842
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo biodegradability and biocompatibility evaluation of novel alanine ester based polyphosphazenes in a rat model.
    Sethuraman S; Nair LS; El-Amin S; Farrar R; Nguyen MT; Singh A; Allcock HR; Greish YE; Brown PW; Laurencin CT
    J Biomed Mater Res A; 2006 Jun; 77(4):679-87. PubMed ID: 16514601
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biodegradable 'intelligent' materials in response to chemical stimuli for biomedical applications.
    Ju XJ; Xie R; Yang L; Chu LY
    Expert Opin Ther Pat; 2009 May; 19(5):683-96. PubMed ID: 19441941
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrophilic polymers--biocompatibility testing in vitro.
    Kejlová K; Labský J; Jírová D; Bendová H
    Toxicol In Vitro; 2005 Oct; 19(7):957-62. PubMed ID: 16081240
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biocompatibility of polypyrrole particles: an in-vivo study in mice.
    Ramanaviciene A; Kausaite A; Tautkus S; Ramanavicius A
    J Pharm Pharmacol; 2007 Feb; 59(2):311-5. PubMed ID: 17270084
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acid phosphatase activity as enzymatic assay of biomedical compatibility of polymers.
    Burpee VF; Hackenberg RW; Hillegass DV; Arconti RJ; Sharp WV
    J Biomed Mater Res; 1978 Sep; 12(5):767-771. PubMed ID: 701306
    [No Abstract]   [Full Text] [Related]  

  • 19. A PLGA membrane controlling cell behaviour for promoting tissue regeneration.
    Owen GR; Jackson J; Chehroudi B; Burt H; Brunette DM
    Biomaterials; 2005 Dec; 26(35):7447-56. PubMed ID: 16039709
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of dual scale scaffolds via direct polymer melt deposition and electrospinning for applications in tissue regeneration.
    Park SH; Kim TG; Kim HC; Yang DY; Park TG
    Acta Biomater; 2008 Sep; 4(5):1198-207. PubMed ID: 18458008
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.