These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 12552735)

  • 21. Biostability of materials and implants.
    Bruck SD
    J Long Term Eff Med Implants; 1991; 1(1):89-106. PubMed ID: 10171109
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A three-layered nano-carbonated hydroxyapatite/collagen/PLGA composite membrane for guided tissue regeneration.
    Liao S; Wang W; Uo M; Ohkawa S; Akasaka T; Tamura K; Cui F; Watari F
    Biomaterials; 2005 Dec; 26(36):7564-71. PubMed ID: 16005963
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biodegradable 'intelligent' materials in response to physical stimuli for biomedical applications.
    Ju XJ; Xie R; Yang L; Chu LY
    Expert Opin Ther Pat; 2009 Apr; 19(4):493-507. PubMed ID: 19441928
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Progress in the studies on the evaluation of biocompatibility of biomaterials].
    Yang X; Xi T
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2001 Mar; 18(1):123-8. PubMed ID: 11332093
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Polymers incorporating nitric oxide releasing/generating substances for improved biocompatibility of blood-contacting medical devices.
    Frost MC; Reynolds MM; Meyerhoff ME
    Biomaterials; 2005 May; 26(14):1685-93. PubMed ID: 15576142
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synthetic scleral reinforcement materials: I. Development and in vivo tissue biocompatibility response.
    Jacob-LaBarre JT; Assouline M; Byrd T; McDonald M
    J Biomed Mater Res; 1994 Jun; 28(6):699-712. PubMed ID: 8071381
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synthesis and characterization of a temperature-responsive biocompatible poly(N-vinylcaprolactam) cryogel: a step towards designing a novel cell scaffold.
    Srivastava A; Kumar A
    J Biomater Sci Polym Ed; 2009; 20(10):1393-415. PubMed ID: 19622279
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microcellular polyHIPE polymer supports osteoblast growth and bone formation in vitro.
    Akay G; Birch MA; Bokhari MA
    Biomaterials; 2004 Aug; 25(18):3991-4000. PubMed ID: 15046889
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Thermomechanics of the shape memory effect in polymers for biomedical applications.
    Gall K; Yakacki CM; Liu Y; Shandas R; Willett N; Anseth KS
    J Biomed Mater Res A; 2005 Jun; 73(3):339-48. PubMed ID: 15806564
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tissue reaction to matrices of reconstituted keratin polymer implanted subcutaneously in sheep.
    Peplow PV; Dias GJ; Teixeira F; Kelly RJ
    J Biomed Mater Res A; 2009 Apr; 89(1):255-65. PubMed ID: 18465821
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fabrication and in vitro degradation of porous fumarate-based polymer/alumoxane nanocomposite scaffolds for bone tissue engineering.
    Mistry AS; Cheng SH; Yeh T; Christenson E; Jansen JA; Mikos AG
    J Biomed Mater Res A; 2009 Apr; 89(1):68-79. PubMed ID: 18428800
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synthesis of degradable poly(L-lactide-co-ethylene glycol) porous tubes by liquid-liquid centrifugal casting for use as nerve guidance channels.
    Goraltchouk A; Freier T; Shoichet MS
    Biomaterials; 2005 Dec; 26(36):7555-63. PubMed ID: 16005955
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Angiogenesis around new AB-polymer networks after one week of implantation in mice.
    Binzen E; Rickert D; Kelch S; Fuhrmann R
    Clin Hemorheol Microcirc; 2003; 28(3):183-8. PubMed ID: 12775900
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chitosan based surfactant polymers designed to improve blood compatibility on biomaterials.
    Sagnella S; Mai-Ngam K
    Colloids Surf B Biointerfaces; 2005 May; 42(2):147-55. PubMed ID: 15833667
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Design of novel biointerfaces (II). Fabrication of self-organized porous polymer film with highly uniform pores.
    Tanaka M; Takebayashi M; Miyama M; Nishida J; Shimomura M
    Biomed Mater Eng; 2004; 14(4):439-46. PubMed ID: 15472392
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Porous-conductive chitosan scaffolds for tissue engineering, 1. Preparation and characterization.
    Wan Y; Wu H; Wen D
    Macromol Biosci; 2004 Sep; 4(9):882-90. PubMed ID: 15468297
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Silk-inspired polymers and proteins.
    Hardy JG; Scheibel TR
    Biochem Soc Trans; 2009 Aug; 37(Pt 4):677-81. PubMed ID: 19614574
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biomedical applications of polyhydroxyalkanoates: an overview of animal testing and in vivo responses.
    Valappil SP; Misra SK; Boccaccini AR; Roy I
    Expert Rev Med Devices; 2006 Nov; 3(6):853-68. PubMed ID: 17280548
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fullerenol-based electroactive artificial muscles utilizing biocompatible polyetherimide.
    Rajagopalan M; Oh IK
    ACS Nano; 2011 Mar; 5(3):2248-56. PubMed ID: 21332175
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Three-dimensional, bioactive, biodegradable, polymer-bioactive glass composite scaffolds with improved mechanical properties support collagen synthesis and mineralization of human osteoblast-like cells in vitro.
    Lu HH; El-Amin SF; Scott KD; Laurencin CT
    J Biomed Mater Res A; 2003 Mar; 64(3):465-74. PubMed ID: 12579560
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.