BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 12552834)

  • 1. [Microbial reduction ability of various iron oxides in pure culture experiment].
    Qu D; Schnell S
    Wei Sheng Wu Xue Bao; 2001 Dec; 41(6):745-9. PubMed ID: 12552834
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transformation of carbon tetrachloride by biogenic iron species in the presence of Geobacter sulfurreducens and electron shuttles.
    Maithreepala RA; Doong RA
    J Hazard Mater; 2009 May; 164(1):337-44. PubMed ID: 18804909
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preliminary characterization and biological reduction of putative biogenic iron oxides (BIOS) from the Tonga-Kermadec Arc, southwest Pacific Ocean.
    Langley S; Igric P; Takahashi Y; Sakai Y; Fortin D; Hannington MD; Schwarz-Schampera U
    Geobiology; 2009 Jan; 7(1):35-49. PubMed ID: 19200145
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduction of U(VI) by Fe(II) in the presence of hydrous ferric oxide and hematite: effects of solid transformation, surface coverage, and humic acid.
    Jang JH; Dempsey BA; Burgos WD
    Water Res; 2008 Apr; 42(8-9):2269-77. PubMed ID: 18191438
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of trace element release during Fe(II)-activated recrystallization of Al-, Cr-, and Sn-substituted goethite and hematite.
    Frierdich AJ; Scherer MM; Bachman JE; Engelhard MH; Rapponotti BW; Catalano JG
    Environ Sci Technol; 2012 Sep; 46(18):10031-9. PubMed ID: 22924460
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dissimilatory Fe(III) and Mn(IV) reduction.
    Lovley DR; Holmes DE; Nevin KP
    Adv Microb Physiol; 2004; 49():219-86. PubMed ID: 15518832
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fe(III) oxide reduction and carbon tetrachloride dechlorination by a newly isolated Klebsiella pneumoniae strain L17.
    Li XM; Zhou SG; Li FB; Wu CY; Zhuang L; Xu W; Liu L
    J Appl Microbiol; 2009 Jan; 106(1):130-9. PubMed ID: 19054230
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced remediation of carbon tetrachloride by Fe(II)-Fe(III) systems in the presence of copper ions.
    Maithreepala RA; Doong RA
    Water Sci Technol; 2004; 50(8):161-8. PubMed ID: 15566199
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of hematite/Fe(II) systems with cement/Fe(II) systems in reductively dechlorinating trichloroethylene.
    Kim HS; Kang WH; Kim M; Park JY; Hwang I
    Chemosphere; 2008 Oct; 73(5):813-9. PubMed ID: 18597815
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biostimulation of iron reduction and subsequent oxidation of sediment containing Fe-silicates and Fe-oxides: effect of redox cycling on Fe(III) bioreduction.
    Komlos J; Kukkadapu RK; Zachara JM; Jaffé PR
    Water Res; 2007 Jul; 41(13):2996-3004. PubMed ID: 17467035
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anoxic and Oxic Oxidation of Rocks Containing Fe(II)Mg-Silicates and Fe(II)-Monosulfides as Source of Fe(III)-Minerals and Hydrogen. Geobiotropy.
    Bassez MP
    Orig Life Evol Biosph; 2017 Dec; 47(4):453-480. PubMed ID: 28361301
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fe electron transfer and atom exchange in goethite: influence of Al-substitution and anion sorption.
    Latta DE; Bachman JE; Scherer MM
    Environ Sci Technol; 2012 Oct; 46(19):10614-23. PubMed ID: 22963051
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microbial removal of uranyl by sulfate reducing bacteria in the presence of Fe (III) (hydr)oxides.
    Zhengji Y
    J Environ Radioact; 2010 Sep; 101(9):700-5. PubMed ID: 20471727
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of biogenic iron species and copper ions on the reduction of carbon tetrachloride under iron-reducing conditions.
    Maithreepala RA; Doong RA
    Chemosphere; 2008 Feb; 70(8):1405-13. PubMed ID: 17963818
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controls on Fe(II)-activated trace element release from goethite and hematite.
    Frierdich AJ; Catalano JG
    Environ Sci Technol; 2012 Feb; 46(3):1519-26. PubMed ID: 22185654
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anaerobic redox cycling of iron by freshwater sediment microorganisms.
    Weber KA; Urrutia MM; Churchill PF; Kukkadapu RK; Roden EE
    Environ Microbiol; 2006 Jan; 8(1):100-13. PubMed ID: 16343326
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Effect of iron oxides addition on organic acids content in paddy soil].
    Qu D; Sylvia S; Rolfconrad
    Ying Yong Sheng Tai Xue Bao; 2002 Nov; 13(11):1425-8. PubMed ID: 12624999
    [TBL] [Abstract][Full Text] [Related]  

  • 18. One-pot aqueous solution syntheses of iron oxide nanostructures with controlled crystal phases through a microbial-mineralization-inspired approach.
    Oaki Y; Yagita N; Imai H
    Chemistry; 2012 Jan; 18(1):110-6. PubMed ID: 22144040
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Connecting observations of hematite (alpha-Fe2O3) growth catalyzed by Fe(II).
    Rosso KM; Yanina SV; Gorski CA; Larese-Casanova P; Scherer MM
    Environ Sci Technol; 2010 Jan; 44(1):61-7. PubMed ID: 20039734
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancement of the reductive transformation of pentachlorophenol by polycarboxylic acids at the iron oxide-water interface.
    Li F; Wang X; Li Y; Liu C; Zeng F; Zhang L; Hao M; Ruan H
    J Colloid Interface Sci; 2008 May; 321(2):332-41. PubMed ID: 18329661
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.