These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 12553599)

  • 1. Femtosecond laser flap creation for laser in situ keratomileusis: six-month follow-up of initial U.S. clinical series.
    Nordan LT; Slade SG; Baker RN; Suarez C; Juhasz T; Kurtz R
    J Refract Surg; 2003; 19(1):8-14. PubMed ID: 12553599
    [TBL] [Abstract][Full Text] [Related]  

  • 2. LASIK for myopia using the Zeiss VisuMax femtosecond laser and MEL 80 excimer laser.
    Blum M; Kunert K; Gille A; Sekundo W
    J Refract Surg; 2009 Apr; 25(4):350-6. PubMed ID: 19431925
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficacy, safety, and flap dimensions of a new femtosecond laser for laser in situ keratomileusis.
    Vryghem JC; Devogelaere T; Stodulka P
    J Cataract Refract Surg; 2010 Mar; 36(3):442-8. PubMed ID: 20202543
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tracker-assisted laser in situ keratomileusis for myopia using the autonomous scanning and tracking laser: 12-month results.
    Chitkara DK; Rosen E; Gore C; Howes F; Kowalewski E
    Ophthalmology; 2002 May; 109(5):965-72. PubMed ID: 11986105
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Femtosecond laser versus mechanical keratome LASIK for myopia.
    Montés-Micó R; Rodríguez-Galietero A; Alió JL
    Ophthalmology; 2007 Jan; 114(1):62-8. PubMed ID: 17070593
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of Epi-LASIK and off-flap Epi-LASIK for the treatment of low and moderate myopia.
    Kalyvianaki MI; Kymionis GD; Kounis GA; Panagopoulou SI; Grentzelos MA; Pallikaris IG
    Ophthalmology; 2008 Dec; 115(12):2174-80. PubMed ID: 19041475
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Safety and predictability of laser in situ keratomileusis enhancement by flap reelevation in high myopia.
    Brahma A; McGhee CN; Craig JP; Brown AD; Weed KH; McGhee J; Brown R
    J Cataract Refract Surg; 2001 Apr; 27(4):593-603. PubMed ID: 11311630
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of 2 femtosecond lasers for flap creation in myopic laser in situ keratomileusis: one-year results.
    Yu CQ; Manche EE
    J Cataract Refract Surg; 2015 Apr; 41(4):740-8. PubMed ID: 25840298
    [TBL] [Abstract][Full Text] [Related]  

  • 9. First clinical results with the femtosecond neodynium-glass laser in refractive surgery.
    Ratkay-Traub I; Ferincz IE; Juhasz T; Kurtz RM; Krueger RR
    J Refract Surg; 2003; 19(2):94-103. PubMed ID: 12701713
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predictability of corneal flap thickness in laser in situ keratomileusis using a 200 kHz femtosecond laser.
    Cummings AB; Cummings BK; Kelly GE
    J Cataract Refract Surg; 2013 Mar; 39(3):378-85. PubMed ID: 23352500
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thin-flap laser in situ keratomileusis with femtosecond-laser technology.
    Kymionis GD; Kontadakis GA; Grentzelos MA; Panagopoulou SI; Stojanovic N; Kankariya VP; Henderson BA; Pallikaris IG
    J Cataract Refract Surg; 2013 Sep; 39(9):1366-71. PubMed ID: 23820304
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predictors affecting myopic regression in - 6.0D to - 10.0D myopia after laser-assisted subepithelial keratomileusis and laser in situ keratomileusis flap creation with femtosecond laser-assisted or mechanical microkeratome-assisted.
    Zhou J; Gu W; Li S; Wu L; Gao Y; Guo X
    Int Ophthalmol; 2020 Jan; 40(1):213-225. PubMed ID: 31571091
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Laser-assisted in-situ keratomileusis (LASIK) with a mechanical microkeratome compared to LASIK with a femtosecond laser for LASIK in adults with myopia or myopic astigmatism.
    Kahuam-López N; Navas A; Castillo-Salgado C; Graue-Hernandez EO; Jimenez-Corona A; Ibarra A
    Cochrane Database Syst Rev; 2020 Apr; 4(4):CD012946. PubMed ID: 32255519
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flap characteristics, predictability, and safety of the Ziemer FEMTO LDV femtosecond laser with the disposable suction ring for LASIK.
    Pietilä J; Huhtala A; Mäkinen P; Uusitalo H
    Eye (Lond); 2014 Jan; 28(1):66-71. PubMed ID: 24232315
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prospective contralateral eye study to compare 80- and 120-μm flap LASIK using the VisuMax femtosecond laser.
    Lim DH; Keum JE; Ju WK; Lee JH; Chung TY; Chung ES
    J Refract Surg; 2013 Jul; 29(7):462-8. PubMed ID: 23820228
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomechanical effects of femtosecond and microkeratome-based flap creation: prospective contralateral examination of two patients.
    Krueger RR; Dupps WJ
    J Refract Surg; 2007 Oct; 23(8):800-7. PubMed ID: 17985800
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Retreatment after laser in situ keratomileusis.
    Pérez-Santonja JJ; Ayala MJ; Sakla HF; Ruíz-Moreno JM; Alió JL
    Ophthalmology; 1999 Jan; 106(1):21-8. PubMed ID: 9917776
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Retreatment after wavefront-guided and standard myopic LASIK.
    Jin GJ; Merkley KH
    Ophthalmology; 2006 Sep; 113(9):1623-8. PubMed ID: 16828506
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of the visual results after SMILE and femtosecond laser-assisted LASIK for myopia.
    Lin F; Xu Y; Yang Y
    J Refract Surg; 2014 Apr; 30(4):248-54. PubMed ID: 24702576
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long-term results of superficial laser in situ keratomileusis after ultrathin flap creation.
    Kymionis GD; Tsiklis N; Pallikaris AI; Diakonis V; Hatzithanasis G; Kavroulaki D; Jankov M; Pallikaris IG
    J Cataract Refract Surg; 2006 Aug; 32(8):1276-80. PubMed ID: 16863961
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.