These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 12553765)

  • 1. Modified carbon surfaces as "organic electrodes" that exhibit conductance switching.
    Solak AO; Eichorst LR; Clark WJ; McCreery RL
    Anal Chem; 2003 Jan; 75(2):296-305. PubMed ID: 12553765
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electron transport and redox reactions in carbon-based molecular electronic junctions.
    McCreery RL; Wu J; Kalakodimi RP
    Phys Chem Chem Phys; 2006 Jun; 8(22):2572-90. PubMed ID: 16738711
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Preparation of chemically modified carbon electrodes by anodization in 1-alkanols and their application to electrochemical analysis].
    Maeda H
    Yakugaku Zasshi; 2000 Feb; 120(2):170-82. PubMed ID: 10689964
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electroanalytical performance of carbon films with near-atomic flatness.
    Ranganathan S; McCreery RL
    Anal Chem; 2001 Mar; 73(5):893-900. PubMed ID: 11289433
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mono- and multilayer formation by diazonium reduction on carbon surfaces monitored with atomic force microscopy "scratching".
    Anariba F; DuVall SH; McCreery RL
    Anal Chem; 2003 Aug; 75(15):3837-44. PubMed ID: 14572051
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simple electrochemical method for deposition and voltammetric inspection of silver particles at the liquid-liquid interface of a thin-film electrode.
    Mirceski V; Gulaboski R
    J Phys Chem B; 2006 Feb; 110(6):2812-20. PubMed ID: 16471890
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ raman spectroelectrochemistry of electron transfer between glassy carbon and a chemisorbed nitroazobenzene monolayer.
    Itoh T; McCreery RL
    J Am Chem Soc; 2002 Sep; 124(36):10894-902. PubMed ID: 12207545
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ STM imaging and direct electrochemistry of Pyrococcus furiosus ferredoxin assembled on thiolate-modified Au111 surfaces.
    Zhang J; Christensen HE; Ooi BL; Ulstrup J
    Langmuir; 2004 Nov; 20(23):10200-7. PubMed ID: 15518514
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dissociative electron transfer to organic chlorides: electrocatalysis at metal cathodes.
    Isse AA; Gottardello S; Durante C; Gennaro A
    Phys Chem Chem Phys; 2008 May; 10(17):2409-16. PubMed ID: 18414732
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrasonic Generation of Thiyl Radicals: A General Method of Rapidly Connecting Molecules to a Range of Electrodes for Electrochemical and Molecular Electronics Applications.
    Dief EM; Darwish N
    ACS Sens; 2021 Feb; 6(2):573-580. PubMed ID: 33355460
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrochemical sensing platform based on the highly ordered mesoporous carbon-fullerene system.
    Zhou M; Guo J; Guo LP; Bai J
    Anal Chem; 2008 Jun; 80(12):4642-50. PubMed ID: 18476717
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amperometric and voltammetric detection of hydrazine using glassy carbon electrodes modified with carbon nanotubes and catechol derivatives.
    Salimi A; Miranzadeh L; Hallaj R
    Talanta; 2008 Mar; 75(1):147-56. PubMed ID: 18371860
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mediatorless voltammetric oxidation of NADH and sensing of ethanol.
    Raj CR; Behera S
    Biosens Bioelectron; 2005 Dec; 21(6):949-56. PubMed ID: 16257664
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distance-dependent electron transfer at passivated electrodes decorated by gold nanoparticles.
    Barfidokht A; Ciampi S; Luais E; Darwish N; Gooding JJ
    Anal Chem; 2013 Jan; 85(2):1073-80. PubMed ID: 23215046
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Attachment of gold nanoparticles to glassy carbon electrode and its application for the direct electrochemistry and electrocatalytic behavior of hemoglobin.
    Zhang L; Jiang X; Wang E; Dong S
    Biosens Bioelectron; 2005 Aug; 21(2):337-45. PubMed ID: 16023961
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calculation of Electrochemical Reorganization Energies for Redox Molecules at Self-Assembled Monolayer Modified Electrodes.
    Ghosh S; Hammes-Schiffer S
    J Phys Chem Lett; 2015 Jan; 6(1):1-5. PubMed ID: 26263083
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lignosulfonate-modified electrodes: electrochemical properties and electrocatalysis of NADH oxidation.
    Milczarek G
    Langmuir; 2009 Sep; 25(17):10345-53. PubMed ID: 19456182
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct electron transfer of horseradish peroxidase on a functional nanocomplex modified glassy carbon electrode.
    Xiao BL; Hong J; Gao YF; Yang T; Moosavi-Movahedi AA; Ghourchian H
    Biomed Mater Eng; 2014; 24(1):1079-84. PubMed ID: 24211999
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication and electrocatalysis of self-assembly directed gold nanoparticles anchored carbon nanotubes modified electrode.
    Lee KP; Gopalan AI; Santhosh P; Manesh KM; Kim JH; Kim KS
    J Nanosci Nanotechnol; 2006 Jun; 6(6):1575-83. PubMed ID: 17025055
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct electrochemistry and electrocatalysis of myoglobin on redox-active self-assembling monolayers derived from nitroaniline modified electrode.
    Kumar SA; Chen SM
    Biosens Bioelectron; 2007 Jun; 22(12):3042-50. PubMed ID: 17306525
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.