BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 12553825)

  • 1. A new approach to mineralization of biocompatible hydrogel scaffolds: an efficient process toward 3-dimensional bonelike composites.
    Song J; Saiz E; Bertozzi CR
    J Am Chem Soc; 2003 Feb; 125(5):1236-43. PubMed ID: 12553825
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mineralization of synthetic polymer scaffolds: a bottom-up approach for the development of artificial bone.
    Song J; Malathong V; Bertozzi CR
    J Am Chem Soc; 2005 Mar; 127(10):3366-72. PubMed ID: 15755154
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel scaffolds based on poly(2-hydroxyethyl methacrylate) superporous hydrogels for bone tissue engineering.
    Çetin D; Kahraman AS; Gümüşderelioğlu M
    J Biomater Sci Polym Ed; 2011; 22(9):1157-78. PubMed ID: 20615330
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biologically inspired rosette nanotubes and nanocrystalline hydroxyapatite hydrogel nanocomposites as improved bone substitutes.
    Zhang L; Rodriguez J; Raez J; Myles AJ; Fenniri H; Webster TJ
    Nanotechnology; 2009 Apr; 20(17):175101. PubMed ID: 19420581
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid aqueous photo-polymerization route to polymer and polymer-composite hydrogel 3D inverted colloidal crystal scaffolds.
    Liu Y; Wang S; Krouse J; Kotov NA; Eghtedari M; Vargas G; Motamedi M
    J Biomed Mater Res A; 2007 Oct; 83(1):1-9. PubMed ID: 17335022
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Morphological and topographic effects on calcification tendency of pHEMA hydrogels.
    Lou X; Vijayasekaran S; Sugiharti R; Robertson T
    Biomaterials; 2005 Oct; 26(29):5808-17. PubMed ID: 15949546
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomimetic macroporous hydrogels: protein ligand distribution and cell response to the ligand architecture in the scaffold.
    Savina IN; Dainiak M; Jungvid H; Mikhalovsky SV; Galaev IY
    J Biomater Sci Polym Ed; 2009; 20(12):1781-95. PubMed ID: 19723441
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomimetic polymer/apatite composite scaffolds for mineralized tissue engineering.
    Zhang R; Ma PX
    Macromol Biosci; 2004 Feb; 4(2):100-11. PubMed ID: 15468200
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental and numerical measurements of adhesion energies between PHEMA and PGLYMA with hydroxyapatite crystal.
    Youssefian S; Liu P; Askarinejad S; Shalchy F; Song J; Rahbar N
    Bioinspir Biomim; 2015 Jul; 10(4):046011. PubMed ID: 26179911
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of motif-programmed artificial proteins on the calcium uptake in a synthetic hydrogel.
    Chirila TV; Minamisawa T; Keen I; Shiba K
    Macromol Biosci; 2009 Oct; 9(10):959-67. PubMed ID: 19569172
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomimetic synthesis of calcium-deficient hydroxyapatite in a natural hydrogel.
    Hutchens SA; Benson RS; Evans BR; O'Neill HM; Rawn CJ
    Biomaterials; 2006 Sep; 27(26):4661-70. PubMed ID: 16713623
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molding mineral within microporous hydrogels by a polymer-induced liquid-precursor (PILP) process.
    Cheng X; Gower LB
    Biotechnol Prog; 2006; 22(1):141-9. PubMed ID: 16454504
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly superporous cholesterol-modified poly(2-hydroxyethyl methacrylate) scaffolds for spinal cord injury repair.
    Kubinová S; Horák D; Hejčl A; Plichta Z; Kotek J; Syková E
    J Biomed Mater Res A; 2011 Dec; 99(4):618-29. PubMed ID: 21953978
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Process and kinetics of bonelike apatite formation on sintered hydroxyapatite in a simulated body fluid.
    Kim HM; Himeno T; Kokubo T; Nakamura T
    Biomaterials; 2005 Jul; 26(21):4366-73. PubMed ID: 15701365
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomimetic mineralization of woven bone-like nanocomposites: role of collagen cross-links.
    Li Y; Thula TT; Jee S; Perkins SL; Aparicio C; Douglas EP; Gower LB
    Biomacromolecules; 2012 Jan; 13(1):49-59. PubMed ID: 22133238
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional biomimetic mineralization of dense hydrogel templates.
    Liu G; Zhao D; Tomsia AP; Minor AM; Song X; Saiz E
    J Am Chem Soc; 2009 Jul; 131(29):9937-9. PubMed ID: 19621954
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioactive hydroxyapatite coatings on polymer composites for orthopedic implants.
    Auclair-Daigle C; Bureau MN; Legoux JG; Yahia L
    J Biomed Mater Res A; 2005 Jun; 73(4):398-408. PubMed ID: 15892136
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PHEMA hydrogels modified through the grafting of phosphate groups by ATRP support the attachment and growth of human corneal epithelial cells.
    Zainuddin ; Barnard Z; Keen I; Hill DJ; Chirila TV; Harkin DG
    J Biomater Appl; 2008 Sep; 23(2):147-68. PubMed ID: 18632768
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The impact of critical point drying with liquid carbon dioxide on collagen-hydroxyapatite composite scaffolds.
    Sachlos E; Wahl DA; Triffitt JT; Czernuszka JT
    Acta Biomater; 2008 Sep; 4(5):1322-31. PubMed ID: 18440886
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomimetic and cell-mediated mineralization of hydroxyapatite by carrageenan functionalized graphene oxide.
    Liu H; Cheng J; Chen F; Hou F; Bai D; Xi P; Zeng Z
    ACS Appl Mater Interfaces; 2014 Mar; 6(5):3132-40. PubMed ID: 24527702
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.