These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
224 related articles for article (PubMed ID: 12553825)
1. A new approach to mineralization of biocompatible hydrogel scaffolds: an efficient process toward 3-dimensional bonelike composites. Song J; Saiz E; Bertozzi CR J Am Chem Soc; 2003 Feb; 125(5):1236-43. PubMed ID: 12553825 [TBL] [Abstract][Full Text] [Related]
2. Mineralization of synthetic polymer scaffolds: a bottom-up approach for the development of artificial bone. Song J; Malathong V; Bertozzi CR J Am Chem Soc; 2005 Mar; 127(10):3366-72. PubMed ID: 15755154 [TBL] [Abstract][Full Text] [Related]
3. Novel scaffolds based on poly(2-hydroxyethyl methacrylate) superporous hydrogels for bone tissue engineering. Çetin D; Kahraman AS; Gümüşderelioğlu M J Biomater Sci Polym Ed; 2011; 22(9):1157-78. PubMed ID: 20615330 [TBL] [Abstract][Full Text] [Related]
5. Rapid aqueous photo-polymerization route to polymer and polymer-composite hydrogel 3D inverted colloidal crystal scaffolds. Liu Y; Wang S; Krouse J; Kotov NA; Eghtedari M; Vargas G; Motamedi M J Biomed Mater Res A; 2007 Oct; 83(1):1-9. PubMed ID: 17335022 [TBL] [Abstract][Full Text] [Related]
6. Morphological and topographic effects on calcification tendency of pHEMA hydrogels. Lou X; Vijayasekaran S; Sugiharti R; Robertson T Biomaterials; 2005 Oct; 26(29):5808-17. PubMed ID: 15949546 [TBL] [Abstract][Full Text] [Related]
7. Biomimetic macroporous hydrogels: protein ligand distribution and cell response to the ligand architecture in the scaffold. Savina IN; Dainiak M; Jungvid H; Mikhalovsky SV; Galaev IY J Biomater Sci Polym Ed; 2009; 20(12):1781-95. PubMed ID: 19723441 [TBL] [Abstract][Full Text] [Related]
9. Experimental and numerical measurements of adhesion energies between PHEMA and PGLYMA with hydroxyapatite crystal. Youssefian S; Liu P; Askarinejad S; Shalchy F; Song J; Rahbar N Bioinspir Biomim; 2015 Jul; 10(4):046011. PubMed ID: 26179911 [TBL] [Abstract][Full Text] [Related]
10. Effect of motif-programmed artificial proteins on the calcium uptake in a synthetic hydrogel. Chirila TV; Minamisawa T; Keen I; Shiba K Macromol Biosci; 2009 Oct; 9(10):959-67. PubMed ID: 19569172 [TBL] [Abstract][Full Text] [Related]
11. Biomimetic synthesis of calcium-deficient hydroxyapatite in a natural hydrogel. Hutchens SA; Benson RS; Evans BR; O'Neill HM; Rawn CJ Biomaterials; 2006 Sep; 27(26):4661-70. PubMed ID: 16713623 [TBL] [Abstract][Full Text] [Related]
12. Molding mineral within microporous hydrogels by a polymer-induced liquid-precursor (PILP) process. Cheng X; Gower LB Biotechnol Prog; 2006; 22(1):141-9. PubMed ID: 16454504 [TBL] [Abstract][Full Text] [Related]
13. Highly superporous cholesterol-modified poly(2-hydroxyethyl methacrylate) scaffolds for spinal cord injury repair. Kubinová S; Horák D; Hejčl A; Plichta Z; Kotek J; Syková E J Biomed Mater Res A; 2011 Dec; 99(4):618-29. PubMed ID: 21953978 [TBL] [Abstract][Full Text] [Related]
14. Process and kinetics of bonelike apatite formation on sintered hydroxyapatite in a simulated body fluid. Kim HM; Himeno T; Kokubo T; Nakamura T Biomaterials; 2005 Jul; 26(21):4366-73. PubMed ID: 15701365 [TBL] [Abstract][Full Text] [Related]
15. Biomimetic mineralization of woven bone-like nanocomposites: role of collagen cross-links. Li Y; Thula TT; Jee S; Perkins SL; Aparicio C; Douglas EP; Gower LB Biomacromolecules; 2012 Jan; 13(1):49-59. PubMed ID: 22133238 [TBL] [Abstract][Full Text] [Related]
16. Three-dimensional biomimetic mineralization of dense hydrogel templates. Liu G; Zhao D; Tomsia AP; Minor AM; Song X; Saiz E J Am Chem Soc; 2009 Jul; 131(29):9937-9. PubMed ID: 19621954 [TBL] [Abstract][Full Text] [Related]
17. Bioactive hydroxyapatite coatings on polymer composites for orthopedic implants. Auclair-Daigle C; Bureau MN; Legoux JG; Yahia L J Biomed Mater Res A; 2005 Jun; 73(4):398-408. PubMed ID: 15892136 [TBL] [Abstract][Full Text] [Related]
18. PHEMA hydrogels modified through the grafting of phosphate groups by ATRP support the attachment and growth of human corneal epithelial cells. Zainuddin ; Barnard Z; Keen I; Hill DJ; Chirila TV; Harkin DG J Biomater Appl; 2008 Sep; 23(2):147-68. PubMed ID: 18632768 [TBL] [Abstract][Full Text] [Related]
19. The impact of critical point drying with liquid carbon dioxide on collagen-hydroxyapatite composite scaffolds. Sachlos E; Wahl DA; Triffitt JT; Czernuszka JT Acta Biomater; 2008 Sep; 4(5):1322-31. PubMed ID: 18440886 [TBL] [Abstract][Full Text] [Related]
20. Biomimetic and cell-mediated mineralization of hydroxyapatite by carrageenan functionalized graphene oxide. Liu H; Cheng J; Chen F; Hou F; Bai D; Xi P; Zeng Z ACS Appl Mater Interfaces; 2014 Mar; 6(5):3132-40. PubMed ID: 24527702 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]