These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 12553834)

  • 1. Mechanism of ene reactions of singlet oxygen. A two-step no-intermediate mechanism.
    Singleton DA; Hang C; Szymanski MJ; Meyer MP; Leach AG; Kuwata KT; Chen JS; Greer A; Foote CS; Houk KN
    J Am Chem Soc; 2003 Feb; 125(5):1319-28. PubMed ID: 12553834
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new form of kinetic isotope effect. Dynamic effects on isotopic selectivity and regioselectivity.
    Singleton DA; Hang C; Szymanski MJ; Greenwald EE
    J Am Chem Soc; 2003 Feb; 125(5):1176-7. PubMed ID: 12553813
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multidimensional exploration of valley-ridge inflection points on potential-energy surfaces.
    Sheppard AN; Acevedo O
    J Am Chem Soc; 2009 Feb; 131(7):2530-40. PubMed ID: 19193015
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical prediction of a perepoxide intermediate for the reaction of singlet oxygen with trans-cyclooctene contrasts with the two-step no-intermediate ene reaction for acyclic alkenes.
    Leach AG; Houk KN; Foote CS
    J Org Chem; 2008 Nov; 73(21):8511-9. PubMed ID: 18834182
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isotope effects and the nature of selectivity in rhodium-catalyzed cyclopropanations.
    Nowlan DT; Gregg TM; Davies HM; Singleton DA
    J Am Chem Soc; 2003 Dec; 125(51):15902-11. PubMed ID: 14677982
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unraveling the mechanism of the singlet oxygen ene reaction: recent computational and experimental approaches.
    Alberti MN; Orfanopoulos M
    Chemistry; 2010 Aug; 16(31):9414-21. PubMed ID: 20623729
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational investigation of the conrotatory and disrotatory isomerization channels of bicyclo[1.1.0]butane to buta-1,3-diene: a completely renormalized coupled-cluster study.
    Kinal A; Piecuch P
    J Phys Chem A; 2007 Feb; 111(4):734-42. PubMed ID: 17249766
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel pathways for oxygen insertion into unactivated C-H bonds by dioxiranes. Transition structures for stepwise routes via radical pairs and comparison with the concerted pathway.
    Freccero M; Gandolfi R; Sarzi-Amadè M; Rastelli A
    J Org Chem; 2003 Feb; 68(3):811-23. PubMed ID: 12558403
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The cyclopropyl group as a hypersensitive probe in the singlet oxygen ene reaction mechanism.
    Alberti MN; Orfanopoulos M
    Org Lett; 2008 Jun; 10(12):2465-8. PubMed ID: 18489176
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new solvent-dependent mechanism for a triazolinedione ene reaction.
    Acevedo O; Squillacote ME
    J Org Chem; 2008 Feb; 73(3):912-22. PubMed ID: 18161986
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determining the transition-state structure for different SN2 reactions using experimental nucleophile carbon and secondary alpha-deuterium kinetic isotope effects and theory.
    Westaway KC; Fang YR; MacMillar S; Matsson O; Poirier RA; Islam SM
    J Phys Chem A; 2008 Oct; 112(41):10264-73. PubMed ID: 18816038
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The reaction of singlet oxygen with enecarbamates: a mechanistic playground for investigating chemoselectivity, stereoselectivity, and vibratioselectivity of photooxidations.
    Sivaguru J; Solomon MR; Poon T; Jockusch S; Bosio SG; Adam W; Turro NJ
    Acc Chem Res; 2008 Mar; 41(3):387-400. PubMed ID: 18269252
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isotope effects, dynamics, and the mechanism of solvolysis of aryldiazonium cations in water.
    Ussing BR; Singleton DA
    J Am Chem Soc; 2005 Mar; 127(9):2888-99. PubMed ID: 15740124
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intramolecular and intermolecular kinetic isotope effects (KIE) in the nitrosoarene ene reaction: experimental evidence for reversible intermediate formation.
    Adam W; Krebs O; Orfanopoulos M; Stratakis M; Vougioukalakis GC
    J Org Chem; 2003 Mar; 68(6):2420-5. PubMed ID: 12636411
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reinvestigation of the reaction of ethylene and singlet oxygen by the approximate spin projection method. Comparison with multireference coupled-cluster calculations.
    Saito T; Nishihara S; Kataoka Y; Nakanishi Y; Kitagawa Y; Kawakami T; Yamanaka S; Okumura M; Yamaguchi K
    J Phys Chem A; 2010 Aug; 114(30):7967-74. PubMed ID: 20666543
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Concerted and stepwise reaction mechanisms for the addition of ozone to acetylene: a computational study.
    Chan WT; Weng C; Goddard JD
    J Phys Chem A; 2007 Jun; 111(22):4792-803. PubMed ID: 17500541
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical study of the oxidation of histidine by singlet oxygen.
    Méndez-Hurtado J; López R; Suárez D; Menéndez MI
    Chemistry; 2012 Jul; 18(27):8437-47. PubMed ID: 22639301
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photooxidation of 2-(
    Méndez A; Valdez-Camacho JR; Escalante J
    Molecules; 2020 Oct; 25(21):. PubMed ID: 33137910
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of the putative catalytic base in the phosphoryl transfer reaction in a protein kinase: first-principles calculations.
    Valiev M; Kawai R; Adams JA; Weare JH
    J Am Chem Soc; 2003 Aug; 125(33):9926-7. PubMed ID: 12914447
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isotope effects and the nature of enantioselectivity in the shi epoxidation. The importance of asynchronicity.
    Singleton DA; Wang Z
    J Am Chem Soc; 2005 May; 127(18):6679-85. PubMed ID: 15869289
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.