These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
95 related articles for article (PubMed ID: 1255438)
1. Mass spectral and pyrolytic behavior of the two main products of phenylbutazone degradation: simulation of unusual mass spectral fragmentation. Awang DV; Vincent A J Pharm Sci; 1976 Jan; 65(1):68-70. PubMed ID: 1255438 [TBL] [Abstract][Full Text] [Related]
3. Chemical characterization of decomposition products of pyrazolidinedione-3,5 derivatives. Part 1: Identification of decomposition products and mechanism of degradation of 4-prenyl-1,2-diphenyl-3,5-pyrazolidine-dione in an aqueous solution. Wachowiak R Arzneimittelforschung; 1979; 29(4):599-602. PubMed ID: 582752 [TBL] [Abstract][Full Text] [Related]
4. Autoxidation and hydrolysis kinetics of the sodium salt of phenylbutazone in aqueous solution. Fabre H; Hussam-Eddine N; Lerner D; Mandrou B J Pharm Sci; 1984 Dec; 73(12):1709-13. PubMed ID: 6441841 [TBL] [Abstract][Full Text] [Related]
5. Microbiological transformation of 1,2-diphenyl-3,5 dioxo-4-n-butyl pyrazolidine (phenylbutazone). Favero J; Winternitz F Eur J Drug Metab Pharmacokinet; 1980; 5(1):1-7. PubMed ID: 7389746 [TBL] [Abstract][Full Text] [Related]
6. ESI-MSn and LC-ESI-MS studies to characterize forced degradation products of bosentan and a validated stability-indicating LC-UV method. Bansal G; Singh R; Saini B; Bansal Y J Pharm Biomed Anal; 2013 Jan; 72():186-97. PubMed ID: 22999302 [TBL] [Abstract][Full Text] [Related]
7. LC and LC-MS study of stress decomposition behaviour of isoniazid and establishment of validated stability-indicating assay method. Bhutani H; Singh S; Vir S; Bhutani KK; Kumar R; Chakraborti AK; Jindal KC J Pharm Biomed Anal; 2007 Mar; 43(4):1213-20. PubMed ID: 17118610 [TBL] [Abstract][Full Text] [Related]
8. LC and LC-MS study on establishment of degradation pathway of glipizide under forced decomposition conditions. Bansal G; Singh M; Jindal KC; Singh S J Chromatogr Sci; 2008 Jul; 46(6):510-7. PubMed ID: 18647472 [TBL] [Abstract][Full Text] [Related]
9. LC-UV-PDA and LC-MS studies to characterize degradation products of glimepiride. Bansal G; Singh M; Jindal KC; Singh S J Pharm Biomed Anal; 2008 Nov; 48(3):788-95. PubMed ID: 18804934 [TBL] [Abstract][Full Text] [Related]
10. Critical practical aspects in the application of liquid chromatography-mass spectrometric studies for the characterization of impurities and degradation products. Narayanam M; Handa T; Sharma P; Jhajra S; Muthe PK; Dappili PK; Shah RP; Singh S J Pharm Biomed Anal; 2014 Jan; 87():191-217. PubMed ID: 23706957 [TBL] [Abstract][Full Text] [Related]
11. The metabolism of phenylbutazone in the rat. Bakke OM; Draffan GH; Davies DS Xenobiotica; 1974 Apr; 4(4):237-54. PubMed ID: 4603132 [No Abstract] [Full Text] [Related]
12. Characterization of four new photodegradation products of hydroxychloroquine through LC-PDA, ESI-MSn and LC-MS-TOF studies. Saini B; Bansal G J Pharm Biomed Anal; 2013 Oct; 84():224-31. PubMed ID: 23850938 [TBL] [Abstract][Full Text] [Related]
13. Metabolism of boldenone in man: gas chromatographic/mass spectrometric identification of urinary excreted metabolites and determination of excretion rates. Schänzer W; Donike M Biol Mass Spectrom; 1992 Jan; 21(1):3-16. PubMed ID: 1591280 [TBL] [Abstract][Full Text] [Related]
14. MS2/TOF and LC-MS/TOF studies on toremifene to characterize its forced degradation products. Bansal G; Maddhesia PK; Bansal Y Analyst; 2011 Dec; 136(24):5218-28. PubMed ID: 22013582 [TBL] [Abstract][Full Text] [Related]
15. Characterization of N-methylated amino acids by GC-MS after ethyl chloroformate derivatization. Reddy BS; Chary VN; Pavankumar P; Prabhakar S J Mass Spectrom; 2016 Aug; 51(8):638-650. PubMed ID: 28239971 [TBL] [Abstract][Full Text] [Related]
16. Reactions of hydro(pero)xy derivatives of polyunsaturated fatty acids/esters with nitrite ions under acidic conditions. Unusual nitrosative breakdown of methyl 13-hydro(pero)xyoctadeca-9,11-dienoate to a novel 4-nitro-2-oximinoalk-3-enal product. Napolitano A; Camera E; Picardo M; d'Ishida M J Org Chem; 2002 Feb; 67(4):1125-32. PubMed ID: 11846653 [TBL] [Abstract][Full Text] [Related]
17. Redox and complexation chemistry of the CrVI/CrV-D-glucaric acid system. Mangiameli MF; González JC; Bellú S; Bertoni F; Sala LF Dalton Trans; 2014 Jun; 43(24):9242-54. PubMed ID: 24816781 [TBL] [Abstract][Full Text] [Related]
18. Forced degradation, LC-UV, MS(n) and LC-MS-TOF studies on azilsartan: Identification of a known and three new degradation impurities. Kaushik D; Kaur J; Paul Kaur V; Saini B; Bansal Y; Bansal G J Pharm Biomed Anal; 2016 Feb; 120():202-11. PubMed ID: 26752083 [TBL] [Abstract][Full Text] [Related]
19. Trends in the Periodic System: the mass spectrum of dimethylphenyl phosphane and a comparison of the gas phase reactivity of dimethylphenyl pnictogene radical cations C(6)H(5)E(CH(3))(2)(*+), (E = N, P, As)(dagger). Kirchhoff D; Grützmacher HF; Grützmacher H Eur J Mass Spectrom (Chichester); 2009; 15(2):131-44. PubMed ID: 19423899 [TBL] [Abstract][Full Text] [Related]
20. Chemical investigation of decomposition processes of pyrazolidine-3,5-dione derivatives. Part 3. Kinetics and mechanism of degradation of ketazone in aqueous solutions and solid phase. Wachowiak R Pol J Pharmacol Pharm; 1978; 30(6):833-43. PubMed ID: 39293 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]