These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 12554412)

  • 1. A neuro-fuzzy model for estimating electromyographical activity of trunk muscles due to manual lifting.
    Lee W; Karwowski W; Marras WS; Rodrick D
    Ergonomics; 2003 Jan; 46(1-3):285-309. PubMed ID: 12554412
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A stochastic model of trunk muscle coactivation during trunk bending.
    Mirka GA; Marras WS
    Spine (Phila Pa 1976); 1993 Sep; 18(11):1396-409. PubMed ID: 8235810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of trunk muscle forces and spinal loads estimated by two biomechanical models.
    Arjmand N; Gagnon D; Plamondon A; Shirazi-Adl A; Larivière C
    Clin Biomech (Bristol, Avon); 2009 Aug; 24(7):533-41. PubMed ID: 19493597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of on-body lift assistive device on the lumbar 3D dynamic moments and EMG during asymmetric freestyle lifting.
    Abdoli-E M; Stevenson JM
    Clin Biomech (Bristol, Avon); 2008 Mar; 23(3):372-80. PubMed ID: 18093709
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The quantification of EMG normalization error.
    Mirka GA
    Ergonomics; 1991 Mar; 34(3):343-52. PubMed ID: 1829038
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calibration of EMG to force for knee muscles is applicable with submaximal voluntary contractions.
    Doorenbosch CA; Joosten A; Harlaar J
    J Electromyogr Kinesiol; 2005 Aug; 15(4):429-35. PubMed ID: 15811613
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in trunk muscle activation and lumbar-pelvic position associated with abdominal hollowing and reach during a simulated manual material handling task.
    Butler HL; Hubley-Kozey CL; Kozey JW
    Ergonomics; 2007 Mar; 50(3):410-25. PubMed ID: 17536777
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An on-body personal lift augmentation device (PLAD) reduces EMG amplitude of erector spinae during lifting tasks.
    Abdoli-E M; Agnew MJ; Stevenson JM
    Clin Biomech (Bristol, Avon); 2006 Jun; 21(5):456-65. PubMed ID: 16494978
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of prediction models for the compression force on the lumbosacral disc.
    Kee D; Chung MK
    Ergonomics; 1996 Dec; 39(12):1419-29. PubMed ID: 8969128
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Muscle fatigue and fatigue-related biomechanical changes during a cyclic lifting task.
    Bonato P; Ebenbichler GR; Roy SH; Lehr S; Posch M; Kollmitzer J; Della Croce U
    Spine (Phila Pa 1976); 2003 Aug; 28(16):1810-20. PubMed ID: 12923468
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On hip and lumbar biomechanics. A study of joint load and muscular activity.
    Németh G
    Scand J Rehabil Med Suppl; 1984; 10():1-35. PubMed ID: 6390670
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electromyography of the thigh muscles during lifting tasks in kneeling and squatting postures.
    Gallagher S; Pollard J; Porter WL
    Ergonomics; 2011 Jan; 54(1):91-102. PubMed ID: 21181592
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A fuzzy-genetic model for estimating forces from electromyographical activity of antagonistic muscles due to planar lower arm movements: the effect of nonlinear muscle properties.
    Nowshiravan Rahatabad F; Jafari AH; Fallah A; Razjouyan J
    Biosystems; 2012 Jan; 107(1):56-63. PubMed ID: 21945426
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Postural and trunk muscle response to sudden release during stoop lifting tasks before and after fatigue of the trunk erector muscles.
    Chow DH; Man JW; Holmes AD; Evans JH
    Ergonomics; 2004 May; 47(6):607-24. PubMed ID: 15204290
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of a neuro-fuzzy network for gait event detection using electromyography in the child with cerebral palsy.
    Lauer RT; Smith BT; Betz RR
    IEEE Trans Biomed Eng; 2005 Sep; 52(9):1532-40. PubMed ID: 16189966
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lumbosacral orthoses reduce trunk muscle activity in a postural control task.
    Cholewicki J; Reeves NP; Everding VQ; Morrisette DC
    J Biomech; 2007; 40(8):1731-6. PubMed ID: 17054963
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of exertion level on activation patterns and variability of trunk muscles during multidirectional isometric activities in upright posture.
    Talebian S; Mousavi SJ; Olyaei GR; Sanjari MA; Parnianpour M
    Spine (Phila Pa 1976); 2010 May; 35(11):E443-51. PubMed ID: 20173682
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of posture on dynamic back loading during a cable lifting task.
    Gallagher S; Marras WS; Davis KG; Kovacs K
    Ergonomics; 2002 Apr; 45(5):380-98. PubMed ID: 12028722
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Muscle activity during patient transfers: a preliminary study on the influence of lift assists and experience.
    Keir PJ; MacDonell CW
    Ergonomics; 2004 Feb; 47(3):296-306. PubMed ID: 14668163
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A study of lifting tasks performed on laterally slanted ground surfaces.
    Jiang Z; Shin G; Freeman J; Reid S; Mirka GA
    Ergonomics; 2005 Jun; 48(7):782-95. PubMed ID: 16076737
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.