These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
292 related articles for article (PubMed ID: 12554661)
1. Molecular evidence for a positive role of Spt4 in transcription elongation. Rondón AG; García-Rubio M; González-Barrera S; Aguilera A EMBO J; 2003 Feb; 22(3):612-20. PubMed ID: 12554661 [TBL] [Abstract][Full Text] [Related]
2. The yeast THO complex and mRNA export factors link RNA metabolism with transcription and genome instability. Jimeno S; Rondón AG; Luna R; Aguilera A EMBO J; 2002 Jul; 21(13):3526-35. PubMed ID: 12093753 [TBL] [Abstract][Full Text] [Related]
3. Distinction and relationship between elongation rate and processivity of RNA polymerase II in vivo. Mason PB; Struhl K Mol Cell; 2005 Mar; 17(6):831-40. PubMed ID: 15780939 [TBL] [Abstract][Full Text] [Related]
4. Analysis of a splice array experiment elucidates roles of chromatin elongation factor Spt4-5 in splicing. Xiao Y; Yang YH; Burckin TA; Shiue L; Hartzog GA; Segal MR PLoS Comput Biol; 2005 Sep; 1(4):e39. PubMed ID: 16172632 [TBL] [Abstract][Full Text] [Related]
5. An hpr1 point mutation that impairs transcription and mRNP biogenesis without increasing recombination. Huertas P; García-Rubio ML; Wellinger RE; Luna R; Aguilera A Mol Cell Biol; 2006 Oct; 26(20):7451-65. PubMed ID: 16908536 [TBL] [Abstract][Full Text] [Related]
6. Hpr1 is preferentially required for transcription of either long or G+C-rich DNA sequences in Saccharomyces cerevisiae. Chávez S; García-Rubio M; Prado F; Aguilera A Mol Cell Biol; 2001 Oct; 21(20):7054-64. PubMed ID: 11564888 [TBL] [Abstract][Full Text] [Related]
7. Tho1, a novel hnRNP, and Sub2 provide alternative pathways for mRNP biogenesis in yeast THO mutants. Jimeno S; Luna R; García-Rubio M; Aguilera A Mol Cell Biol; 2006 Jun; 26(12):4387-98. PubMed ID: 16738307 [TBL] [Abstract][Full Text] [Related]
8. Biochemical Analysis of Yeast Suppressor of Ty 4/5 (Spt4/5) Reveals the Importance of Nucleic Acid Interactions in the Prevention of RNA Polymerase II Arrest. Crickard JB; Fu J; Reese JC J Biol Chem; 2016 May; 291(19):9853-70. PubMed ID: 26945063 [TBL] [Abstract][Full Text] [Related]
9. Evidence that Spt4, Spt5, and Spt6 control transcription elongation by RNA polymerase II in Saccharomyces cerevisiae. Hartzog GA; Wada T; Handa H; Winston F Genes Dev; 1998 Feb; 12(3):357-69. PubMed ID: 9450930 [TBL] [Abstract][Full Text] [Related]
10. The yeast transcription elongation factor Spt4/5 is a sequence-specific RNA binding protein. Blythe AJ; Yazar-Klosinski B; Webster MW; Chen E; Vandevenne M; Bendak K; Mackay JP; Hartzog GA; Vrielink A Protein Sci; 2016 Sep; 25(9):1710-21. PubMed ID: 27376968 [TBL] [Abstract][Full Text] [Related]
11. Characterization of the Schizosaccharomyces pombe Spt5-Spt4 complex. Schwer B; Schneider S; Pei Y; Aronova A; Shuman S RNA; 2009 Jul; 15(7):1241-50. PubMed ID: 19460865 [TBL] [Abstract][Full Text] [Related]
12. A simple in vivo assay for measuring the efficiency of gene length-dependent processes in yeast mRNA biogenesis. Morillo-Huesca M; Vanti M; Chávez S FEBS J; 2006 Feb; 273(4):756-69. PubMed ID: 16441662 [TBL] [Abstract][Full Text] [Related]
13. Dynamics of RNA polymerase II and elongation factor Spt4/5 recruitment during activator-dependent transcription. Rosen GA; Baek I; Friedman LJ; Joo YJ; Buratowski S; Gelles J Proc Natl Acad Sci U S A; 2020 Dec; 117(51):32348-32357. PubMed ID: 33293419 [TBL] [Abstract][Full Text] [Related]
14. Replication fork progression is impaired by transcription in hyperrecombinant yeast cells lacking a functional THO complex. Wellinger RE; Prado F; Aguilera A Mol Cell Biol; 2006 Apr; 26(8):3327-34. PubMed ID: 16581804 [TBL] [Abstract][Full Text] [Related]
15. Mutations in the SPT4, SPT5, and SPT6 genes alter transcription of a subset of histone genes in Saccharomyces cerevisiae. Compagnone-Post PA; Osley MA Genetics; 1996 Aug; 143(4):1543-54. PubMed ID: 8844144 [TBL] [Abstract][Full Text] [Related]
16. Identification and characterization of Elf1, a conserved transcription elongation factor in Saccharomyces cerevisiae. Prather D; Krogan NJ; Emili A; Greenblatt JF; Winston F Mol Cell Biol; 2005 Nov; 25(22):10122-35. PubMed ID: 16260625 [TBL] [Abstract][Full Text] [Related]
17. Ubiquitin fusion constructs allow the expression and purification of multi-KOW domain complexes of the Saccharomyces cerevisiae transcription elongation factor Spt4/5. Blythe A; Gunasekara S; Walshe J; Mackay JP; Hartzog GA; Vrielink A Protein Expr Purif; 2014 Aug; 100():54-60. PubMed ID: 24859675 [TBL] [Abstract][Full Text] [Related]
18. Stimulation of RNA polymerase II transcript cleavage activity contributes to maintain transcriptional fidelity in yeast. Koyama H; Ito T; Nakanishi T; Sekimizu K Genes Cells; 2007 May; 12(5):547-59. PubMed ID: 17535246 [TBL] [Abstract][Full Text] [Related]
19. Involvement of S. cerevisiae Rpb4 in subset of pathways related to transcription elongation. Deshpande SM; Sadhale PP; Vijayraghavan U Gene; 2014 Jul; 545(1):126-31. PubMed ID: 24780862 [TBL] [Abstract][Full Text] [Related]
20. Dual roles for Spt5 in pre-mRNA processing and transcription elongation revealed by identification of Spt5-associated proteins. Lindstrom DL; Squazzo SL; Muster N; Burckin TA; Wachter KC; Emigh CA; McCleery JA; Yates JR; Hartzog GA Mol Cell Biol; 2003 Feb; 23(4):1368-78. PubMed ID: 12556496 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]