These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 12554708)

  • 1. Potassium activities in cell compartments of salt-grown barley leaves.
    Cuin TA; Miller AJ; Laurie SA; Leigh RA
    J Exp Bot; 2003 Feb; 54(383):657-61. PubMed ID: 12554708
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photosynthetic capacity is related to the cellular and subcellular partitioning of Na+, K+ and Cl- in salt-affected barley and durum wheat.
    James RA; Munns R; von Caemmerer S; Trejo C; Miller C; Condon TA
    Plant Cell Environ; 2006 Dec; 29(12):2185-97. PubMed ID: 17081251
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-cell measurements of the contributions of cytosolic Na(+) and K(+) to salt tolerance.
    Carden DE; Walker DJ; Flowers TJ; Miller AJ
    Plant Physiol; 2003 Feb; 131(2):676-83. PubMed ID: 12586891
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ability of leaf mesophyll to retain potassium correlates with salinity tolerance in wheat and barley.
    Wu H; Shabala L; Barry K; Zhou M; Shabala S
    Physiol Plant; 2013 Dec; 149(4):515-27. PubMed ID: 23611560
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of divalent cations on ion fluxes and leaf photochemistry in salinized barley leaves.
    Shabala S; Shabala L; Van Volkenburgh E; Newman I
    J Exp Bot; 2005 May; 56(415):1369-78. PubMed ID: 15809285
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The short-term growth response to salt of the developing barley leaf.
    Fricke W; Akhiyarova G; Wei W; Alexandersson E; Miller A; Kjellbom PO; Richardson A; Wojciechowski T; Schreiber L; Veselov D; Kudoyarova G; Volkov V
    J Exp Bot; 2006; 57(5):1079-95. PubMed ID: 16513814
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amino acids regulate salinity-induced potassium efflux in barley root epidermis.
    Cuin TA; Shabala S
    Planta; 2007 Feb; 225(3):753-61. PubMed ID: 16955270
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exogenously supplied compatible solutes rapidly ameliorate NaCl-induced potassium efflux from barley roots.
    Cuin TA; Shabala S
    Plant Cell Physiol; 2005 Dec; 46(12):1924-33. PubMed ID: 16223738
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potassium homeostasis in vacuolate plant cells.
    Walker DJ; Leigh RA; Miller AJ
    Proc Natl Acad Sci U S A; 1996 Sep; 93(19):10510-4. PubMed ID: 11607707
    [TBL] [Abstract][Full Text] [Related]  

  • 10. K+ retention in leaf mesophyll, an overlooked component of salinity tolerance mechanism: a case study for barley.
    Wu H; Zhu M; Shabala L; Zhou M; Shabala S
    J Integr Plant Biol; 2015 Feb; 57(2):171-85. PubMed ID: 25040138
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differences in efficient metabolite management and nutrient metabolic regulation between wild and cultivated barley grown at high salinity.
    Yousfi S; Rabhi M; Hessini K; Abdelly C; Gharsalli M
    Plant Biol (Stuttg); 2010 Jul; 12(4):650-8. PubMed ID: 20636908
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cell-Type-Specific H+-ATPase Activity in Root Tissues Enables K+ Retention and Mediates Acclimation of Barley (Hordeum vulgare) to Salinity Stress.
    Shabala L; Zhang J; Pottosin I; Bose J; Zhu M; Fuglsang AT; Velarde-Buendia A; Massart A; Hill CB; Roessner U; Bacic A; Wu H; Azzarello E; Pandolfi C; Zhou M; Poschenrieder C; Mancuso S; Shabala S
    Plant Physiol; 2016 Dec; 172(4):2445-2458. PubMed ID: 27770060
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The cytosolic Na+ : K+ ratio does not explain salinity-induced growth impairment in barley: a dual-tracer study using 42K+ and 24Na+.
    Kronzucker HJ; Szczerba MW; Moazami-Goudarzi M; Britto DT
    Plant Cell Environ; 2006 Dec; 29(12):2228-37. PubMed ID: 17081255
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative detection of changes in the leaf-mesophyll tonoplast proteome in dependency of a cadmium exposure of barley (Hordeum vulgare L.) plants.
    Schneider T; Schellenberg M; Meyer S; Keller F; Gehrig P; Riedel K; Lee Y; Eberl L; Martinoia E
    Proteomics; 2009 May; 9(10):2668-77. PubMed ID: 19391183
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid and tissue-specific accumulation of solutes in the growth zone of barley leaves in response to salinity.
    Fricke W
    Planta; 2004 Jul; 219(3):515-25. PubMed ID: 15085434
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Limitation of Cell Elongation in Barley (Hordeum vulgare L.) Leaves Through Mechanical and Tissue-Hydraulic Properties.
    Touati M; Knipfer T; Visnovitz T; Kameli A; Fricke W
    Plant Cell Physiol; 2015 Jul; 56(7):1364-73. PubMed ID: 25907571
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 42K analysis of sodium-induced potassium efflux in barley: mechanism and relevance to salt tolerance.
    Britto DT; Ebrahimi-Ardebili S; Hamam AM; Coskun D; Kronzucker HJ
    New Phytol; 2010 Apr; 186(2):373-84. PubMed ID: 20122133
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low potassium enhances sodium uptake in red-beet under moderate saline conditions.
    Subbarao GV; Wheeler RM; Stutte GW; Levine LH
    J Plant Nutr; 2000; 23(10):1449-70. PubMed ID: 11594364
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous Measurement of Intracellular pH and K+ or NO3- in Barley Root Cells Using Triple-Barreled, Ion-Selective Microelectrodes.
    Walker DJ; Smith SJ; Miller AJ
    Plant Physiol; 1995 Jun; 108(2):743-751. PubMed ID: 12228506
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The coordinated regulation of Na
    Wang CM; Xia ZR; Wu GQ; Yuan HJ; Wang XR; Li JH; Tian FP; Zhang Q; Zhu XQ; He JJ; Kumar T; Wang XL; Zhang JL
    Plant Sci; 2016 Nov; 252():358-366. PubMed ID: 27717472
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.