BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 12554724)

  • 1. Electrophysiological responses of maize roots to low water potentials: relationship to growth and ABA accumulation.
    Ober ES; Sharp RE
    J Exp Bot; 2003 Feb; 54(383):813-24. PubMed ID: 12554724
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Abscisic acid accumulation maintains maize primary root elongation at low water potentials by restricting ethylene production.
    Spollen WG; LeNoble ME; Samuels TD; Bernstein N; Sharp RE
    Plant Physiol; 2000 Mar; 122(3):967-76. PubMed ID: 10712561
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Growth maintenance of the maize primary root at low water potentials involves increases in cell-wall extension properties, expansin activity, and wall susceptibility to expansins.
    Wu Y; Sharp RE; Durachko DM; Cosgrove DJ
    Plant Physiol; 1996 Jul; 111(3):765-72. PubMed ID: 11536740
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modification of expansin transcript levels in the maize primary root at low water potentials.
    Wu Y; Thorne ET; Sharp RE; Cosgrove DJ
    Plant Physiol; 2001 Aug; 126(4):1471-9. PubMed ID: 11500546
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Initiation and regulation of water deficit-induced abscisic acid accumulation in maize leaves and roots: cellular volume and water relations.
    Jia W; Zhang J; Liang J
    J Exp Bot; 2001 Feb; 52(355):295-300. PubMed ID: 11283174
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of inhibition of abscisic Acid accumulation on the spatial distribution of elongation in the primary root and mesocotyl of maize at low water potentials.
    Saab IN; Sharp RE; Pritchard J
    Plant Physiol; 1992 May; 99(1):26-33. PubMed ID: 16668859
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proline Accumulation in Maize (Zea mays L.) Primary Roots at Low Water Potentials (I. Requirement for Increased Levels of Abscisic Acid).
    Ober ES; Sharp RE
    Plant Physiol; 1994 Jul; 105(3):981-987. PubMed ID: 12232259
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Translatable RNA Populations Associated with Maintenance of Primary Root Elongation and Inhibition of Mesocotyl Elongation by Abscisic Acid in Maize Seedlings at Low Water Potentials.
    Saab IN; Ho T; Sharp RE
    Plant Physiol; 1995 Oct; 109(2):593-601. PubMed ID: 12228616
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Root Growth Maintenance at Low Water Potentials (Increased Activity of Xyloglucan Endotransglycosylase and Its Possible Regulation by Abscisic Acid).
    Wu Y; Spollen WG; Sharp RE; Hetherington PR; Fry SC
    Plant Physiol; 1994 Oct; 106(2):607-615. PubMed ID: 12232354
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Growth-induced water potentials and the growth of maize leaves.
    Tang AC; Boyer JS
    J Exp Bot; 2002 Mar; 53(368):489-503. PubMed ID: 11847248
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Abscisic acid accumulation modulates auxin transport in the root tip to enhance proton secretion for maintaining root growth under moderate water stress.
    Xu W; Jia L; Shi W; Liang J; Zhou F; Li Q; Zhang J
    New Phytol; 2013 Jan; 197(1):139-150. PubMed ID: 23106247
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graviresponsiveness and abscisic-acid content of roots of carotenoid-deficient mutants of Zea mays L.
    Moore R; Smith JD
    Planta; 1985; 164():126-8. PubMed ID: 11540855
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Root pressurization affects growth-induced water potentials and growth in dehydrated maize leaves.
    Tang AC; Boyer JS
    J Exp Bot; 2003 Nov; 54(392):2479-88. PubMed ID: 14512379
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increased abscisic acid levels in transgenic maize overexpressing AtLOS5 mediated root ion fluxes and leaf water status under salt stress.
    Zhang J; Yu H; Zhang Y; Wang Y; Li M; Zhang J; Duan L; Zhang M; Li Z
    J Exp Bot; 2016 Mar; 67(5):1339-55. PubMed ID: 26743432
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chilling responses of maize (Zea mays L.) seedlings: root hydraulic conductance, abscisic acid, and stomatal conductance.
    Melkonian J; Yu LX; Setter TL
    J Exp Bot; 2004 Aug; 55(403):1751-60. PubMed ID: 15235000
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of water deficit on radicle apex elongation and solute accumulation in Zea mays L.
    Velázquez-Márquez S; Conde-Martínez V; Trejo C; Delgado-Alvarado A; Carballo A; Suárez R; Mascorro JO; Trujillo AR
    Plant Physiol Biochem; 2015 Nov; 96():29-37. PubMed ID: 26218550
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Growth and graviresponsiveness of primary roots of Zea mays seedlings deficient in abscisic acid and gibberellic acid.
    Moore R; Dickey K
    J Exp Bot; 1985 Nov; 36(172):1793-8. PubMed ID: 11540846
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Abscisic acid, xanthoxin and violaxanthin in the caps of gravistimulated maize roots.
    Feldman LJ; Arroyave NJ; Sun PS
    Planta; 1985; 166():483-9. PubMed ID: 11540889
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microtubule dynamics in relation to osmotic stress-induced ABA accumulation in Zea mays roots.
    Lü B; Gong Z; Wang J; Zhang J; Liang J
    J Exp Bot; 2007; 58(10):2565-72. PubMed ID: 17545221
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lateral ABA transport in maize roots (Zea mays): visualization by immunolocalization.
    Schraut D; Ullrich CI; Hartung W
    J Exp Bot; 2004 Aug; 55(403):1635-41. PubMed ID: 15234994
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.