BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 12554724)

  • 21. Apoplastic transport of abscisic acid through roots of maize: effect of the exodermis.
    Freundl E; Steudle E; Hartung W
    Planta; 2000 Jan; 210(2):222-31. PubMed ID: 10664128
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Abscisic acid and hydraulic conductivity of maize roots: a study using cell- and root-pressure probes.
    Hose E; Steudle E; Hartung W
    Planta; 2000 Nov; 211(6):874-82. PubMed ID: 11144273
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effects of ABA on channel-mediated K(+) transport across higher plant roots.
    Roberts SK; Snowman BN
    J Exp Bot; 2000 Sep; 51(350):1585-94. PubMed ID: 11006309
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Root growth, secondary root formation and root gravitropism in carotenoid-deficient seedlings of Zea mays L.
    Ng YK; Moore R
    Ann Bot; 1985; 55():387-94. PubMed ID: 11539041
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Involvement of plasma-membrane NADPH oxidase in abscisic acid- and water stress-induced antioxidant defense in leaves of maize seedlings.
    Jiang M; Zhang J
    Planta; 2002 Oct; 215(6):1022-30. PubMed ID: 12355163
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dynamic analysis of ABA accumulation in relation to the rate of ABA catabolism in maize tissues under water deficit.
    Ren H; Gao Z; Chen L; Wei K; Liu J; Fan Y; Davies WJ; Jia W; Zhang J
    J Exp Bot; 2007; 58(2):211-9. PubMed ID: 16982652
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Plasma membrane proteomics in the maize primary root growth zone: novel insights into root growth adaptation to water stress.
    Voothuluru P; Anderson JC; Sharp RE; Peck SC
    Plant Cell Environ; 2016 Sep; 39(9):2043-54. PubMed ID: 27341663
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Osmotic adjustment and the inhibition of leaf, root, stem and silk growth at low water potentials in maize.
    Westgate ME; Boyer JS
    Planta; 1985 Jul; 164(4):540-9. PubMed ID: 24248230
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Salt-stress-induced ABA accumulation is more sensitively triggered in roots than in shoots.
    Jia W; Wang Y; Zhang S; Zhang J
    J Exp Bot; 2002 Nov; 53(378):2201-6. PubMed ID: 12379787
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Radial transport of water and abscisic acid (ABA) in roots of Zea mays under conditions of nutrient deficiency.
    Schraut D; Heilmeier H; Hartung W
    J Exp Bot; 2005 Mar; 56(413):879-86. PubMed ID: 15699064
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sulphate as a xylem-borne chemical signal precedes the expression of ABA biosynthetic genes in maize roots.
    Ernst L; Goodger JQ; Alvarez S; Marsh EL; Berla B; Lockhart E; Jung J; Li P; Bohnert HJ; Schachtman DP
    J Exp Bot; 2010 Jul; 61(12):3395-405. PubMed ID: 20566566
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Differential growth and hormone redistribution in gravireacting maize roots.
    Pilet PE
    Environ Exp Bot; 1989 Jan; 29(1):37-45. PubMed ID: 11541034
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Changes of cytosolic Ca(2+) fluorescence intensity and plasma membrane calcium channels of maize root tip cells under osmotic stress.
    Liu Z; Ma Z; Guo X; Shao H; Cui Q; Song W
    Plant Physiol Biochem; 2010; 48(10-11):860-5. PubMed ID: 20843698
    [TBL] [Abstract][Full Text] [Related]  

  • 34. How the roots contribute to the ability of Phaseolus vulgaris L. to cope with chilling-induced water stress.
    Vernieri P; Lenzi A; Figaro M; Tognoni F; Pardossi A
    J Exp Bot; 2001 Nov; 52(364):2199-206. PubMed ID: 11604459
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Progressive inhibition by water deficit of cell wall extensibility and growth along the elongation zone of maize roots is related to increased lignin metabolism and progressive stelar accumulation of wall phenolics.
    Fan L; Linker R; Gepstein S; Tanimoto E; Yamamoto R; Neumann PM
    Plant Physiol; 2006 Feb; 140(2):603-12. PubMed ID: 16384904
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Abscisic acid mediated differential growth responses of root and shoot of Vigna radiata (L.) Wilczek seedlings under water stress.
    Das S; Kar RK
    Plant Physiol Biochem; 2018 Feb; 123():213-221. PubMed ID: 29248679
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Complexity and coordination of root growth at low water potentials: recent advances from transcriptomic and proteomic analyses.
    Yamaguchi M; Sharp RE
    Plant Cell Environ; 2010 Apr; 33(4):590-603. PubMed ID: 19895398
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Root growth maintenance during water deficits: physiology to functional genomics.
    Sharp RE; Poroyko V; Hejlek LG; Spollen WG; Springer GK; Bohnert HJ; Nguyen HT
    J Exp Bot; 2004 Nov; 55(407):2343-51. PubMed ID: 15448181
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Root-ABA1, a major constitutive QTL, affects maize root architecture and leaf ABA concentration at different water regimes.
    Giuliani S; Sanguineti MC; Tuberosa R; Bellotti M; Salvi S; Landi P
    J Exp Bot; 2005 Dec; 56(422):3061-70. PubMed ID: 16246858
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Root water potential integrates discrete soil physical properties to influence ABA signalling during partial rootzone drying.
    Dodd IC; Egea G; Watts CW; Whalley WR
    J Exp Bot; 2010 Aug; 61(13):3543-51. PubMed ID: 20591896
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.