BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 12554730)

  • 1. Photosynthetic performance of an Arabidopsis mutant with elevated stomatal density (sdd1-1) under different light regimes.
    Schlüter U; Muschak M; Berger D; Altmann T
    J Exp Bot; 2003 Feb; 54(383):867-74. PubMed ID: 12554730
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stomatal function, density and pattern, and CO
    Vráblová M; Vrábl D; Hronková M; Kubásek J; Šantrůček J
    Plant Biol (Stuttg); 2017 Sep; 19(5):689-701. PubMed ID: 28453883
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Light-induced STOMAGEN-mediated stomatal development in Arabidopsis leaves.
    Hronková M; Wiesnerová D; Šimková M; Skůpa P; Dewitte W; Vráblová M; Zažímalová E; Šantrůček J
    J Exp Bot; 2015 Aug; 66(15):4621-30. PubMed ID: 26002974
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The subtilisin-like serine protease SDD1 mediates cell-to-cell signaling during Arabidopsis stomatal development.
    Von Groll U; Berger D; Altmann T
    Plant Cell; 2002 Jul; 14(7):1527-39. PubMed ID: 12119372
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stomatal aperture can compensate altered stomatal density in Arabidopsis thaliana at growth light conditions.
    Büssis D; von Groll U; Fisahn J; Altmann T
    Funct Plant Biol; 2006 Nov; 33(11):1037-1043. PubMed ID: 32689314
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Defects in leaf carbohydrate metabolism compromise acclimation to high light and lead to a high chlorophyll fluorescence phenotype in Arabidopsis thaliana.
    Schmitz J; Schöttler MA; Krueger S; Geimer S; Schneider A; Kleine T; Leister D; Bell K; Flügge UI; Häusler RE
    BMC Plant Biol; 2012 Jan; 12():8. PubMed ID: 22248311
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic and diffusional limitations of photosynthesis in fluctuating irradiance in Arabidopsis thaliana.
    Kaiser E; Morales A; Harbinson J; Heuvelink E; Prinzenberg AE; Marcelis LF
    Sci Rep; 2016 Aug; 6():31252. PubMed ID: 27502328
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancement of leaf photosynthetic capacity through increased stomatal density in Arabidopsis.
    Tanaka Y; Sugano SS; Shimada T; Hara-Nishimura I
    New Phytol; 2013 May; 198(3):757-764. PubMed ID: 23432385
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modification of carbon partitioning, photosynthetic capacity, and O2 sensitivity in Arabidopsis plants with low ADP-glucose pyrophosphorylase activity.
    Sun J; Okita TW; Edwards GE
    Plant Physiol; 1999 Jan; 119(1):267-76. PubMed ID: 9880369
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A subtilisin-like serine protease involved in the regulation of stomatal density and distribution in Arabidopsis thaliana.
    Berger D; Altmann T
    Genes Dev; 2000 May; 14(9):1119-31. PubMed ID: 10809670
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decrease in leaf sucrose synthesis leads to increased leaf starch turnover and decreased RuBP regeneration-limited photosynthesis but not Rubisco-limited photosynthesis in Arabidopsis null mutants of SPSA1.
    Sun J; Zhang J; Larue CT; Huber SC
    Plant Cell Environ; 2011 Apr; 34(4):592-604. PubMed ID: 21309792
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic modelling of limitations on improving leaf CO
    Morales A; Kaiser E; Yin X; Harbinson J; Molenaar J; Driever SM; Struik PC
    Plant Cell Environ; 2018 Mar; 41(3):589-604. PubMed ID: 29243271
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A mutant of Arabidopsis lacking the triose-phosphate/phosphate translocator reveals metabolic regulation of starch breakdown in the light.
    Walters RG; Ibrahim DG; Horton P; Kruger NJ
    Plant Physiol; 2004 Jun; 135(2):891-906. PubMed ID: 15173568
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Overexpression of a
    Morales-Navarro S; Pérez-Díaz R; Ortega A; de Marcos A; Mena M; Fenoll C; González-Villanueva E; Ruiz-Lara S
    Front Plant Sci; 2018; 9():940. PubMed ID: 30022991
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reductions in mesophyll and guard cell photosynthesis impact on the control of stomatal responses to light and CO2.
    Lawson T; Lefebvre S; Baker NR; Morison JI; Raines CA
    J Exp Bot; 2008; 59(13):3609-19. PubMed ID: 18836187
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Importance of Fluctuations in Light on Plant Photosynthetic Acclimation.
    Vialet-Chabrand S; Matthews JS; Simkin AJ; Raines CA; Lawson T
    Plant Physiol; 2017 Apr; 173(4):2163-2179. PubMed ID: 28184008
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Systemic signalling of environmental cues in Arabidopsis leaves.
    Coupe SA; Palmer BG; Lake JA; Overy SA; Oxborough K; Woodward FI; Gray JE; Quick WP
    J Exp Bot; 2006; 57(2):329-41. PubMed ID: 16330523
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Water deficits and heat shock effects on photosynthesis of a transgenic Arabidopsis thaliana constitutively expressing ABP9, a bZIP transcription factor.
    Zhang X; Wollenweber B; Jiang D; Liu F; Zhao J
    J Exp Bot; 2008; 59(4):839-48. PubMed ID: 18272919
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lack of fructose 2,6-bisphosphate compromises photosynthesis and growth in Arabidopsis in fluctuating environments.
    McCormick AJ; Kruger NJ
    Plant J; 2015 Mar; 81(5):670-83. PubMed ID: 25602028
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of sucrose and starch synthesis in wheat (Triticum aestivum L.) leaves: role of fructose 2,6-bisphosphate.
    Trevanion SJ
    Planta; 2002 Aug; 215(4):653-65. PubMed ID: 12172849
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.